[1]金相华,陈尔明.拓扑动力系统中一类集合的推广[J].华侨大学学报(自然科学版),2011,32(4):467-470.[doi:10.11830/ISSN.1000-5013.2011.04.0467]
 JIN Xiang-hua,CHEN Er-ming.Some Generalizations of a Class of Sets in Topological Dynamical Systems[J].Journal of Huaqiao University(Natural Science),2011,32(4):467-470.[doi:10.11830/ISSN.1000-5013.2011.04.0467]
点击复制

拓扑动力系统中一类集合的推广()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第32卷
期数:
2011年第4期
页码:
467-470
栏目:
出版日期:
2011-07-20

文章信息/Info

Title:
Some Generalizations of a Class of Sets in Topological Dynamical Systems
文章编号:
1000-5013(2011)04-0467-04
作者:
金相华陈尔明
华侨大学数学科学学院
Author(s):
JIN Xiang-hua CHEN Er-ming
School of Mathematics Sciences, Huaqiao University, Quanzhou 362021, China
关键词:
动力系统 邻域 不变集 传递系统 极小系统 回复点 混沌
Keywords:
dynamical system neighborhood invariant set transitive system minimal system recurrent point chaos
分类号:
O19
DOI:
10.11830/ISSN.1000-5013.2011.04.0467
文献标志码:
A
摘要:
进一步讨论一类集合L(x1,x2),推广其定义; 其次,研究推广后集合类的相关性质,并给出等度连续系统的一个刻画.最后,对集合L(x1,x2)与L(x1,x2,x3)之间的关系进行讨论,得到一个新的结果.
Abstract:
In this paper,we give further discussions about a class of sets L(x1,x2).First,we generalize its definitions and study the relative properties of these generalized sets.Then we give a characterization of equicontinous systems.Finally,by discussing the relationship between L(x1,x2) and L(x1,x2,x3),we obtain a new result.

参考文献/References:

[1] 叶向东, 黄文, 邵松. 拓扑动力系统概论 [M]. 北京:科学出版社, 2008.
[2] HUANG W, LI S M, SHAO S. Null systems and sequence entropy pairs [J]. Ergodic Theory and Dynamical Systems, 2003(5):1505-1523.doi:10.1017/S0143385702001724.
[3] HUANG W. Tame systems and scrambled pairs under an Abelian group action [J]. Ergodic Theory and Dynamical Systems, 2006(5):1549-1567.doi:10.1017/S0143385706000198.
[4] HIRSCH M W, SMALE S, DEVANEY R L. Differential equations, dynamical systems, and an introduction to chaos [M]. 北京:人民邮电出版社, 2008.264-276.
[5] 尤承业. 基础拓扑学讲义 [M]. 北京:北京大学出版社, 1997.55-56.
[6] 熊金城. 点集拓扑讲义 [M]. 北京:高等教育出版社, 2003.62-63.

更新日期/Last Update: 2014-03-23