参考文献/References:
[1] YE Y Y. Approximating global quadratic programming with convex quadratic constraints [J]. Journal of Global Optimization, 1999(1):1-17.doi:10.1023/A:1008370723217.
[2] KOZLOV M K, TARASOV S P, KHACHIYAN L G. Polynomial solvability of convex quadratic programming [J]. Doklady Akademii Nauk SSSR, 1979(5):1049-1051.
[3] PARDALOS P M, VAVASIS S A. Qradratic programming with one negative eigenvalue is NP-bard [J]. Global Optimization, 1991(1):15-22.
[4] SHERALI H D, TUNCBOLEK C H. A reformulation-convexification approach for solving nonconvex quadratic programming problems [J]. Global Optimization, 1995(1):1-31.
[5] ANSTREICHER K M. Semidefinite programming versus the reformulation-linearization technique for nonconvex quadratically constrained quadratic programming [J]. Global Optimization, 2009, (2/3):471-484.
[6] TIM V V, FAIZ A A. Difference of convex solution of quadratically constrained optimization problems [J]. European Journal of Operational Research, 2003, (2):349-362.doi:10.1016/S0377-2217(02)00432-0.
[7] QU Shao-jian, ZHANG Ke-cun, JI Ying. A global optimization algorithm using parametric linearization relaxation [J]. Applied Mathematics and Computation, 2007(1):763-771.doi:10.1016/j.amc.2006.08.028.
[8] 吴慧卓, 段东东, 张可村. 一种新的求解带有非凸二次约束的非凸二次规划问题的加速全局优化方法 [J]. 工程数学学报, 2009(1):75-84.doi:10.3969/j.issn.1005-3085.2009.01.011.
[9] 申培萍, 刘利敏. 带非凸二次约束二次规划问题全局解的线性化方法 [J]. 高等学校计算数学学报, 2008(3):261-267.doi:10.3969/j.issn.1000-081X.2008.03.007.