[1]刘斌,林俊义,黄常标,等.采用移动最小二乘的平面散乱点集曲线重构[J].华侨大学学报(自然科学版),2010,31(6):611-614.[doi:10.11830/ISSN.1000-5013.2010.06.0611]
 LIU Bin,LIN Jun-yi,HUANG Chang-biao,et al.Planar Curve Reconstruction from a Set of Unorganized Points Based on Moving Least Square[J].Journal of Huaqiao University(Natural Science),2010,31(6):611-614.[doi:10.11830/ISSN.1000-5013.2010.06.0611]
点击复制

采用移动最小二乘的平面散乱点集曲线重构()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第31卷
期数:
2010年第6期
页码:
611-614
栏目:
出版日期:
2010-11-20

文章信息/Info

Title:
Planar Curve Reconstruction from a Set of Unorganized Points Based on Moving Least Square
文章编号:
1000-5013(2010)06-0611-04
作者:
刘斌林俊义黄常标江开勇
华侨大学机电及自动化学院
Author(s):
LIU Bin LIN Jun-yi HUANG Chang-biao JIANG Kai-yong
College of Mechanical Engineering and Automation, Huaqiao University, Quanzhou 362021, China
关键词:
曲线重构 散乱点集 移动最小二乘 细化点云 B样条
Keywords:
curve reconstruction unorganized points moving least square thinning point cloud B-spline
分类号:
TP391.41
DOI:
10.11830/ISSN.1000-5013.2010.06.0611
文献标志码:
A
摘要:
针对带状分布的无序散乱点集的曲线重构问题,采用移动最小二乘法对其进行二次局部加权回归和细化点云; 在迭代过程中,采用逐步减小K-邻域顶点数的策略,以兼顾计算效率和精度.对细化后的点云进行重新排序和稀疏,把无序点集有序化; 然后,利用现有的B样条曲线重构技术,对点云进行重构.最后,实例验证算法的有效性.
Abstract:
In allusion to curve reconstruction problem from a set of unorganized points with a zonal distribution,moving least square(MLS) is used to conduct second locally weighted regression and to thin point cloud,in the iteration process of which the strategy of reducing K-neighborhood vertices gradually is adopted in order that both computation efficiency and accuracy could be taken into account.The point cloud being thinned is recorded and resparsed to make unorganized point set orderly,the the existing B-spline curve reconstruction technique is used to reconstruct the point cloud.Finally,the validity of the algorithm is proven by the case study.

参考文献/References:

[1] KORSTERS M. Curvature-dependent parameterization of curves and surfaces [J]. Computer-Aided Design, 1991(8):569-578.
[2] SARKAR B, MENQ C H. Parameter optimization in approximating curves and surfaces to measurement data [J]. Computer Aided Geometric Design, 1991(4):267-290.doi:10.1016/0167-8396(91)90016-5.
[3] YANG Xun-nian, WANG Guo-zhao. Planar point set fairing and fitting by arc splines [J]. Computer-Aided Design, 2001(1):35-43.doi:10.1016/S0010-4485(00)00059-2.
[4] POTTMANN H, RANDRUP T. Rotational and helical surface approximation for reverse engineering [J]. Computing, 1998(4):307-322.doi:10.1007/BF02684378.
[5] GOSHTASBY A A. Grouping and parameterizing irregularly spaced points for curve fitting [J]. ACM Transactions on Graphics, 2000(3):185-203.doi:10.1145/353981.353992.
[6] FANG L, GOSSARD D C. Multidimensional curve fitting to unorganized data points by nonlinear minimization [J]. Computer-Aided Design, 1995(1):48-58.doi:10.1016/0010-4485(95)90752-2.
[7] TAUBIN G, RONDFARD R. Implicit simplicial models for adaptive curve reconstruction [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1996(3):321-325.doi:10.1109/34.485559.
[8] 钟纲, 杨勋年, 汪国昭. 平面无序点集曲线重建的跟踪算法 [J]. 软件学报, 2002, (11):2188-2193.
[9] LEVIN D. The approximation power of moving least-squares [J]. Mathematics of Computation, 1998, (224):1517-1531.doi:10.1090/S0025-5718-98-00974-0.
[10] LEE I K. Curve reconstruction from unorganized points [J]. Computer Aided Geometric Design, 2000(2):161-177.
[11] 顾步云, 周来水, 刘胜兰. 基于平面散乱点集的曲线重建算法 [J]. 机械科学与技术, 2007(4):455-458.doi:10.3321/j.issn:1003-8728.2007.04.014.
[12] DANIELS J Ⅱ, HA L K, OCHOTTA T. Robust smooth feature extraction from point clouds [A]. Washington, DC:IEEE Computer Society, 2007.123-136.
[13] 施法中. 计算机辅助几何设与非均匀有理B样条 [M]. 北京:高等教育出版社, 2001.

备注/Memo

备注/Memo:
福建省科技计划重点项目(2009H0032,2008H0085); 福建省自然科学基金资助项目(E0810040); 国务院侨办科研基金资助项目(08QZR01)
更新日期/Last Update: 2014-03-23