[1]胡春英,黄心中.单叶调和函数及其反函数为调和拟共形的充要条件[J].华侨大学学报(自然科学版),2010,31(5):586-589.[doi:10.11830/ISSN.1000-5013.2010.05.0586]
 HU Chun-ying,HUANG Xin-zhong.Necessary and Sufficient Condition that Univalent Harmonic Functions and Their Inverse Functions are Harmonic Quasiconformal Mappings[J].Journal of Huaqiao University(Natural Science),2010,31(5):586-589.[doi:10.11830/ISSN.1000-5013.2010.05.0586]
点击复制

单叶调和函数及其反函数为调和拟共形的充要条件()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第31卷
期数:
2010年第5期
页码:
586-589
栏目:
出版日期:
2010-09-20

文章信息/Info

Title:
Necessary and Sufficient Condition that Univalent Harmonic Functions and Their Inverse Functions are Harmonic Quasiconformal Mappings
文章编号:
1000-5013(2010)05-0586-04
作者:
胡春英黄心中
华侨大学数学科学学院
Author(s):
HU Chun-ying HUANG Xin-zhong
School of Mathematical Sciences, Huaqiao University, Quanzhou 362021, China
关键词:
单叶调和函数 拟共形映照 复特征 调和拟共形映照
Keywords:
univalent harmonic functions quasiconformal mappings complex dilatation harmonic quasiconformal mappings
分类号:
O174.55
DOI:
10.11830/ISSN.1000-5013.2010.05.0586
文献标志码:
A
摘要:
研究平面上具有形式f(z)=A[αz+β+log(1-exp(-αz-β))-log(1-exp(-αz-β))]+B的保向单叶调和映照,其中A,B,α,β是常数且满足条件A≠0,α≠0.给出了定义在椭圆和上半平面上的单叶调和函数及其反函数都是调和拟共形映照的充要条件,并推广到一般的单连通区域上.
Abstract:
Plannar sense-preserving univalent harmonic functions with the form f(z)=A[αz+β+log(1-exp(-αz-β))-log(1-exp(-αz-β))]+B,are considered,where A,B,α,β are constants with the condition A≠0,α≠0.Necessary and sufficient condition for such harmonic functions defined elliptic domain or on the upper half plane and their inverse functions to be harmonic quasiconformal mappings are obtained.Our methods also can be applied to the general simply connect domains.

参考文献/References:

[1] LEWY H. On the non-vanishing of the Jacobian in certain one-to-one mappings [J]. Bulletin of the American Mathematical Society, 1936, (10):689-692.doi:10.1090/S0002-9904-1936-06397-4.
[2] 张兆功, 刘礼泉. 单叶调和映照的反函数 [J]. 数学进展, 1996(3):270-276.
[3] PAVLOVI(C) M. Boundary correspondence under harmonic quasiconformal homeomorphisms of the unit disk [J]. Annales Academiae Scientiarum Fennicae Series AI Mathematica, 2002(2):365-372.
[4] KALAJ D, Pavlovi(c) M. Boundary correspondence under quasiconformal harmonic diffeomorphisms of a half-plane [J]. Annales Academiae Scientiarum Fennicae Series AI Mathematica, 2005(1):159-165.
[5] 黄心中. 单位圆盘上的调和拟共形同胚 [J]. 数学年刊A辑, 2008(4):519-524.doi:10.3321/j.issn:1000-8134.2008.04.010.

相似文献/References:

[1]刘增荣.Reich 的一个定理的改进[J].华侨大学学报(自然科学版),1989,10(1):1.[doi:10.11830/ISSN.1000-5013.1989.01.0001]
 Liu Zengrong.Improvement of a Theorem by Reich[J].Journal of Huaqiao University(Natural Science),1989,10(5):1.[doi:10.11830/ISSN.1000-5013.1989.01.0001]
[2]王朝祥,黄心中.分段拟对称为整体拟对称函数的偏差估计[J].华侨大学学报(自然科学版),2003,24(4):345.[doi:10.3969/j.issn.1000-5013.2003.04.002]
 Wang Chaoxiang,Huang Xinzhong.Estimate the Distortion for a Piecewise Quasi-Symmetric Function to be Turned into a Global One[J].Journal of Huaqiao University(Natural Science),2003,24(5):345.[doi:10.3969/j.issn.1000-5013.2003.04.002]
[3]王朝祥,黄心中.闭区间上Zygmund函数的延拓定理[J].华侨大学学报(自然科学版),2006,27(2):119.[doi:10.3969/j.issn.1000-5013.2006.02.002]
 Wang Chaoxiang,Huang Xinzhong.On the Extension Theorem for Zygmund Functions in Closed Interval[J].Journal of Huaqiao University(Natural Science),2006,27(5):119.[doi:10.3969/j.issn.1000-5013.2006.02.002]
[4]林珍连.关于“Beurling-Ahlfors扩张的推广”一文的一点注[J].华侨大学学报(自然科学版),2007,28(3):335.[doi:10.3969/j.issn.1000-5013.2007.03.029]
 LIN Zhen-lian.A Note on the Paper of the Generalization of Beurling-Ahlfors′ Extension[J].Journal of Huaqiao University(Natural Science),2007,28(5):335.[doi:10.3969/j.issn.1000-5013.2007.03.029]
[5]韩雪,黄心中.两类单叶调和函数的偏差估计[J].华侨大学学报(自然科学版),2008,29(4):618.[doi:10.11830/ISSN.1000-5013.2008.04.0618]
 HAN Xue,HUANG Xin-zhong.Estimate on the Distortion for Two Classes of Harmonic Univalent Functions[J].Journal of Huaqiao University(Natural Science),2008,29(5):618.[doi:10.11830/ISSN.1000-5013.2008.04.0618]
[6]陈行堤.调和拟共形映照双曲雅可比的偏差性质[J].华侨大学学报(自然科学版),2010,31(3):351.[doi:10.11830/ISSN.1000-5013.2010.03.0351]
 CHEN Xing-di.Distortion Estimations of the Hyperbolic Jacobians of Harmonic Quasiconformal Mappings[J].Journal of Huaqiao University(Natural Science),2010,31(5):351.[doi:10.11830/ISSN.1000-5013.2010.03.0351]
[7]朱剑峰.单位圆上调和拟共形映照的复特征估计[J].华侨大学学报(自然科学版),2010,31(4):476.[doi:10.11830/ISSN.1000-5013.2010.04.0476]
 ZHU Jian-feng.Estimate for the Dilatation of Harmonic Quasiconformal Mappings in the Unit Disk[J].Journal of Huaqiao University(Natural Science),2010,31(5):476.[doi:10.11830/ISSN.1000-5013.2010.04.0476]
[8]胡春英,黄心中.某些单叶调和函数的稳定性[J].华侨大学学报(自然科学版),2011,32(4):453.[doi:10.11830/ISSN.1000-5013.2011.04.0453]
 HU Chun-ying,HUANG Xin-zhong.Stability of Some Univalent Harmonic Functions[J].Journal of Huaqiao University(Natural Science),2011,32(5):453.[doi:10.11830/ISSN.1000-5013.2011.04.0453]
[9]朱剑峰,黄心中.两类调和函数的拟共形性质[J].华侨大学学报(自然科学版),2011,32(6):705.[doi:10.11830/ISSN.1000-5013.2011.06.0705]
 ZHU Jian-feng,HUANG Xin-zhong.Quasi-Conformality for Two Classes of Harmonic Functions[J].Journal of Huaqiao University(Natural Science),2011,32(5):705.[doi:10.11830/ISSN.1000-5013.2011.06.0705]
[10]胡春英,黄心中.非平凡双向单叶调和映照的微分方程[J].华侨大学学报(自然科学版),2012,33(1):107.[doi:10.11830/ISSN.1000-5013.2012.01.0107]
 HU Chun-ying,HUANG Xin-zhong.On Differential Equations for Non-Trivial Bilateral Univalent Harmonic Mappings[J].Journal of Huaqiao University(Natural Science),2012,33(5):107.[doi:10.11830/ISSN.1000-5013.2012.01.0107]
[11]谢志春,黄心中.某些单叶调和函数类的解析特征[J].华侨大学学报(自然科学版),2009,30(6):704.[doi:10.11830/ISSN.1000-5013.2009.06.0704]
 XIE Zhi-chun,HUANG Xin-zhong.On the Analytic Characteristic Properties for Some Univalent Harmonic Functions[J].Journal of Huaqiao University(Natural Science),2009,30(5):704.[doi:10.11830/ISSN.1000-5013.2009.06.0704]
[12]傅冬绵,黄心中.一类单叶调和函数的拟共形性质[J].华侨大学学报(自然科学版),2019,40(6):812.[doi:10.11830/ISSN.1000-5013.201903003]
 FU Dongmian,HUANG Xinzhong.On Quasiconformal Properties for One Set of Univalent Harmonic Mappings[J].Journal of Huaqiao University(Natural Science),2019,40(5):812.[doi:10.11830/ISSN.1000-5013.201903003]

备注/Memo

备注/Memo:
福建省自然科学基金资助项目(2008J0195); 华侨大学科研基金资助项目(09HZR23)
更新日期/Last Update: 2014-03-23