参考文献/References:
[1] LEWY H. On the non-vanishing of the Jacobian in certain one-to-one mappings [J]. Bulletin of the American Mathematical Society, 1936, (10):689-692.doi:10.1090/S0002-9904-1936-06397-4.
[2] 张兆功, 刘礼泉. 单叶调和映照的反函数 [J]. 数学进展, 1996(3):270-276.
[3] PAVLOVI(C) M. Boundary correspondence under harmonic quasiconformal homeomorphisms of the unit disk [J]. Annales Academiae Scientiarum Fennicae Series AI Mathematica, 2002(2):365-372.
[4] KALAJ D, Pavlovi(c) M. Boundary correspondence under quasiconformal harmonic diffeomorphisms of a half-plane [J]. Annales Academiae Scientiarum Fennicae Series AI Mathematica, 2005(1):159-165.
[5] 黄心中. 单位圆盘上的调和拟共形同胚 [J]. 数学年刊A辑, 2008(4):519-524.doi:10.3321/j.issn:1000-8134.2008.04.010.
相似文献/References:
[1]刘增荣.Reich 的一个定理的改进[J].华侨大学学报(自然科学版),1989,10(1):1.[doi:10.11830/ISSN.1000-5013.1989.01.0001]
Liu Zengrong.Improvement of a Theorem by Reich[J].Journal of Huaqiao University(Natural Science),1989,10(5):1.[doi:10.11830/ISSN.1000-5013.1989.01.0001]
[2]王朝祥,黄心中.分段拟对称为整体拟对称函数的偏差估计[J].华侨大学学报(自然科学版),2003,24(4):345.[doi:10.3969/j.issn.1000-5013.2003.04.002]
Wang Chaoxiang,Huang Xinzhong.Estimate the Distortion for a Piecewise Quasi-Symmetric Function to be Turned into a Global One[J].Journal of Huaqiao University(Natural Science),2003,24(5):345.[doi:10.3969/j.issn.1000-5013.2003.04.002]
[3]王朝祥,黄心中.闭区间上Zygmund函数的延拓定理[J].华侨大学学报(自然科学版),2006,27(2):119.[doi:10.3969/j.issn.1000-5013.2006.02.002]
Wang Chaoxiang,Huang Xinzhong.On the Extension Theorem for Zygmund Functions in Closed Interval[J].Journal of Huaqiao University(Natural Science),2006,27(5):119.[doi:10.3969/j.issn.1000-5013.2006.02.002]
[4]林珍连.关于“Beurling-Ahlfors扩张的推广”一文的一点注[J].华侨大学学报(自然科学版),2007,28(3):335.[doi:10.3969/j.issn.1000-5013.2007.03.029]
LIN Zhen-lian.A Note on the Paper of the Generalization of Beurling-Ahlfors′ Extension[J].Journal of Huaqiao University(Natural Science),2007,28(5):335.[doi:10.3969/j.issn.1000-5013.2007.03.029]
[5]韩雪,黄心中.两类单叶调和函数的偏差估计[J].华侨大学学报(自然科学版),2008,29(4):618.[doi:10.11830/ISSN.1000-5013.2008.04.0618]
HAN Xue,HUANG Xin-zhong.Estimate on the Distortion for Two Classes of Harmonic Univalent Functions[J].Journal of Huaqiao University(Natural Science),2008,29(5):618.[doi:10.11830/ISSN.1000-5013.2008.04.0618]
[6]陈行堤.调和拟共形映照双曲雅可比的偏差性质[J].华侨大学学报(自然科学版),2010,31(3):351.[doi:10.11830/ISSN.1000-5013.2010.03.0351]
CHEN Xing-di.Distortion Estimations of the Hyperbolic Jacobians of Harmonic Quasiconformal Mappings[J].Journal of Huaqiao University(Natural Science),2010,31(5):351.[doi:10.11830/ISSN.1000-5013.2010.03.0351]
[7]朱剑峰.单位圆上调和拟共形映照的复特征估计[J].华侨大学学报(自然科学版),2010,31(4):476.[doi:10.11830/ISSN.1000-5013.2010.04.0476]
ZHU Jian-feng.Estimate for the Dilatation of Harmonic Quasiconformal Mappings in the Unit Disk[J].Journal of Huaqiao University(Natural Science),2010,31(5):476.[doi:10.11830/ISSN.1000-5013.2010.04.0476]
[8]胡春英,黄心中.某些单叶调和函数的稳定性[J].华侨大学学报(自然科学版),2011,32(4):453.[doi:10.11830/ISSN.1000-5013.2011.04.0453]
HU Chun-ying,HUANG Xin-zhong.Stability of Some Univalent Harmonic Functions[J].Journal of Huaqiao University(Natural Science),2011,32(5):453.[doi:10.11830/ISSN.1000-5013.2011.04.0453]
[9]朱剑峰,黄心中.两类调和函数的拟共形性质[J].华侨大学学报(自然科学版),2011,32(6):705.[doi:10.11830/ISSN.1000-5013.2011.06.0705]
ZHU Jian-feng,HUANG Xin-zhong.Quasi-Conformality for Two Classes of Harmonic Functions[J].Journal of Huaqiao University(Natural Science),2011,32(5):705.[doi:10.11830/ISSN.1000-5013.2011.06.0705]
[10]胡春英,黄心中.非平凡双向单叶调和映照的微分方程[J].华侨大学学报(自然科学版),2012,33(1):107.[doi:10.11830/ISSN.1000-5013.2012.01.0107]
HU Chun-ying,HUANG Xin-zhong.On Differential Equations for Non-Trivial Bilateral Univalent Harmonic Mappings[J].Journal of Huaqiao University(Natural Science),2012,33(5):107.[doi:10.11830/ISSN.1000-5013.2012.01.0107]
[11]谢志春,黄心中.某些单叶调和函数类的解析特征[J].华侨大学学报(自然科学版),2009,30(6):704.[doi:10.11830/ISSN.1000-5013.2009.06.0704]
XIE Zhi-chun,HUANG Xin-zhong.On the Analytic Characteristic Properties for Some Univalent Harmonic Functions[J].Journal of Huaqiao University(Natural Science),2009,30(5):704.[doi:10.11830/ISSN.1000-5013.2009.06.0704]
[12]傅冬绵,黄心中.一类单叶调和函数的拟共形性质[J].华侨大学学报(自然科学版),2019,40(6):812.[doi:10.11830/ISSN.1000-5013.201903003]
FU Dongmian,HUANG Xinzhong.On Quasiconformal Properties for One Set of Univalent Harmonic Mappings[J].Journal of Huaqiao University(Natural Science),2019,40(5):812.[doi:10.11830/ISSN.1000-5013.201903003]