参考文献/References:
[1] OREY S, TAYLOR S J. How often on a Brownian path does the law of iterated logarithm fail [J]. Proceedings of the London Mathematical Society, 1974(1):174-192.doi:10.1112/plms/s3-28.1.174.
[2] 黄群, 林火南. 布朗单样本轨道的重分形分析 [J]. 福建师范大学学报(自然科学版), 2003(2):1-8.doi:10.3969/j.issn.1000-5277.2003.02.001.
[3] EHM W. Sample function properties of mutli-parameter stable processes [J]. Probability Theory and Related Fields, 1981(2):195-228.
[4] 林火南. Wiener单的局部时和水平集的Hausdorff测度 [J]. 中国科学D辑, 2000, (10):869-880.doi:10.3321/j.issn:1006-9232.2000.10.002.
[5] KHOSHNEVISAN D, SHI Z. Brownian sheet and capacity [J]. Annals of Probability, 1999(3):1135-1159.doi:10.1214/aop/1022677442.
[6] KHOSHNEVISAN D, XIAO Y M. Level sets of additive Lévy processes [J]. Annals of Probability, 2002(1):62-100.
[7] 邱志平, 林火南. 可加布朗运动样本轨道的重分形分析 [J]. 福建师范大学学报(自然科学版), 2004(4):14-19.doi:10.3969/j.issn.1000-5277.2004.04.004.
[8] FALCONER K J. Fractal geometry-mathematical foundations and application [M]. New York:John Wiley and Sons, Inc, 1990.
[9] DEMBO A, PERES Y, ROSEN J. Thick points for spatial Brownian motion:Multifractal analysis of occupation measure [J]. Annals of Probability, 2000(1):1-35.
[10] TRICOT C. Two definitions of fractal dimension [J]. Mathematical Proceedings of the Cambridge Philosophical Society, 1982(1):57-74.doi:10.1017/S0305004100059119.
[11] XIAO Yi-min. Packing dimension, Hausdorff dimension and Cartesian product sets [J]. Mathematical Proceedings of the Cambridge Philosophical Society, 1996(3):535-546.doi:10.1017/S030500410007506X.
相似文献/References:
[1]邱志平,林火南.布朗单增量“快点”集的Packing维数[J].华侨大学学报(自然科学版),2011,32(1):109.[doi:10.11830/ISSN.1000-5013.2011.01.0109]
QIU Zhi-ping,LIN Huo-nan.Packing Dimension of "Fast Point" Sets for Brownian Sheet[J].Journal of Huaqiao University(Natural Science),2011,32(4):109.[doi:10.11830/ISSN.1000-5013.2011.01.0109]