[1]李永强,逯鹏,王治忠.近似熵在大鼠状态识别中的应用[J].华侨大学学报(自然科学版),2010,31(4):392-395.[doi:10.11830/ISSN.1000-5013.2010.04.0392]
 LI Yong-qiang,LU Peng,WANG Zhi-zhong.Application of Approximate Entropy in Rats’ State Recognition[J].Journal of Huaqiao University(Natural Science),2010,31(4):392-395.[doi:10.11830/ISSN.1000-5013.2010.04.0392]
点击复制

近似熵在大鼠状态识别中的应用()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第31卷
期数:
2010年第4期
页码:
392-395
栏目:
出版日期:
2010-07-20

文章信息/Info

Title:
Application of Approximate Entropy in Rats’ State Recognition
文章编号:
1000-5013(2010)04-0392-04
作者:
李永强逯鹏王治忠
郑州大学电气工程学院
Author(s):
LI Yong-qiang LU Peng WANG Zhi-zhong
School of Electrical Engineering, Zhengzhou University, Zhengzhou 450001, China
关键词:
自发脑电信号 近似熵 状态识别 大鼠 初级视觉皮层
Keywords:
spontaneous electroencephalogram approximate entropy state recognition rat primary visual cortexn
分类号:
Q819
DOI:
10.11830/ISSN.1000-5013.2010.04.0392
文献标志码:
A
摘要:
以大鼠作为实验动物,采用近似熵的方法,分析大鼠初级视觉皮层的自发脑电信号,从而判别大鼠安静、睡眠和活动3种状态.实验结果表明,采用近似熵算法,使用较短的数据就能对大鼠的状态进行有效识别,减少了冗余的计算量,解决在复杂隐蔽环境中对大鼠状态的识别问题.
Abstract:
With rats as experimental animals,using the approximate entropy method to analyze the spontaneous electroencephalogram(EEG) of the rats in primary visual cortex,thus distinguishing rats’ states which are in quietude,sleep and activity.Experimental results show that using approximate entropy algorithm will be able to identify the state of rats effectively and reduce redundant computation just use the shorter data,as well as to solve the problem of rats’ state identification that hidden in a complex environment.

参考文献/References:

[1] LEMONICK M D. Send in the roborats [N]. Time, 2002(5).
[2] MEEK J. Live rats driven by remote control [N]. The Guardian, 2002(2).
[3] IASEMIDIS L D, SHIAU D S, SACKELLARES J C. Dynamical resetting of the human brain at epileptic seizures:Application of nonlinear dynamics and global optimization techniques [J]. IEEE Transactions on Biomedical Engineering, 2004(3):493-506.doi:10.1109/TBME.2003.821013.
[4] PINCUS S M. Approximate entropy as a measure of system complexity [J]. Proc National Aeademy Sciences, 1991(6):2297-2301.
[5] PINCUS S M, GOLDBERGER A L. Physiological time-series analysis:What dose regularity quantify [J]. American Journal of Physiology, 1994(4):H1643-H1656.
[6] 白冬梅, 邱天爽, 陈艳霞. 近似熵在缺氧性脑损伤检测中的应用研究 [J]. 中国生物医学工程学报, 2006(3):361-364.doi:10.3969/j.issn.0258-8021.2006.03.022.
[7] 白冬梅, 邱天爽, 李小兵. 样本熵及在脑电癫痫检测中的应用 [J]. 生物医学工程学杂志, 2007(1):200-205.doi:10.3321/j.issn:1001-5515.2007.01.043.
[8] DONOHO D L. De-noising by soft-thresholding [J]. IEEE Trnas on IT, 1995(3):617-627.doi:10.1109/18.382009.
[9] 王巧兰, 季忠. 基于小波变换的脑电噪声消除方法 [J]. 重庆大学学报(自然科学版), 2005(7):15-17.doi:10.3969/j.issn.1000-582X.2005.07.005.
[10] 洪波, 唐庆玉. 近似熵、互近似熵的性质、快速算法及其在脑电与认知研究中的初步应用 [J]. 信号处理, 1999(2):100-108.

备注/Memo

备注/Memo:
国家自然科学基金资助项目(60841004)
更新日期/Last Update: 2014-03-23