[1]淦犇,黄宜坚.铣削加工表面轮廓的几何分形特征[J].华侨大学学报(自然科学版),2010,31(4):371-377.[doi:10.11830/ISSN.1000-5013.2010.04.0371]
 GAN Ben,HUANG Yi-jian.Geometry Fractal Characteristics of Milled Surface Profiles[J].Journal of Huaqiao University(Natural Science),2010,31(4):371-377.[doi:10.11830/ISSN.1000-5013.2010.04.0371]
点击复制

铣削加工表面轮廓的几何分形特征()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第31卷
期数:
2010年第4期
页码:
371-377
栏目:
出版日期:
2010-07-20

文章信息/Info

Title:
Geometry Fractal Characteristics of Milled Surface Profiles
文章编号:
1000-5013(2010)04-0371-07
作者:
淦犇黄宜坚
华侨大学机电及自动化学院
Author(s):
GAN Ben HUANG Yi-jian
College of Mechanical Engineering and Automation, Huaqiao University, Quanzhou 362021, China
关键词:
分形几何 分维维数 垂直尺度系数 铣削 表面轮廓
Keywords:
fractal geometry fractal dimension vertical scale coefficient milling surface profile
分类号:
TG54
DOI:
10.11830/ISSN.1000-5013.2010.04.0371
文献标志码:
A
摘要:
将分形几何学运用于铣削表面的形貌研究,分别采用结构函数法和重标极差分析法,计算出不同铣削表面的分形维数D和垂直尺度因子G.根据计算结果,运用改进Weierstrass-Mandelbrot分形函数模拟仿真出相应的表面轮廓,并画出实测表面轮廓和模拟表面轮廓的高度归一化概率密度分布图.试验结果表明,铣削表面轮廓分形维数D、垂直尺度因子G随着表面粗糙度的增加而降低; 仿真出的表面轮廓和实测表面轮廓具有相同的高度归一化的概率密度分布,并能更加真实地反映出表面轮廓的细微结构.
Abstract:
The fractal geometry was used to investigate the microtopography of the milled surface.By use of the method of structural function and of rescaled range analysis,the fractal dimension D and vertical scale coefficient G of the different milled surfaces can be obtained.According to the calculation results,the corresponding surface profiles are simulated by using the improved the Weierstrass-Mandelbrot fractal function and the graphs of high degree of normalization probability density distribution of the measured and simulated surface profiles are plotted.The experimental results have shown that the fractal dimension D and vertical scale coefficient G of the milled surface profile decrease with the increase of roughness,the simulated and measured surface profiles have the same high degree of normalization probability density distribution and the former can reflect the fine structure of the surface profiles more really.

参考文献/References:

[1] MAJUMDAR A, BHUSHAN B. Role of fractal geometry in roughness characterizat ion and contact mechanics of surfaces [J]. Journal of Tribology, Transactions of the ASME, 1990(1):205-216.
[2] GAGNEPAIN J J, ROQUES-CARMES C. Fractal approach to two-dimensional and three-dimensional surface roughness [J]. Wear, 1986(1):119-126.
[3] ZHOU G Y, LEU M C. Fractal geometry model for wear prediction [J]. Wear, 1993(1):1-14.
[4] HASEGAWA M, LIU J C, OKUDA K. Calculation of the fractal dimensions of machined surface profiles [J]. Wear, 1996, (1/2):40-45.
[5] MAJUMDAR A, TIEN C L. Fractal characterization and simulation of rough surfaces [J]. Wear, 1990(2):313-327.
[6] JORDOM D L. Measurement and characterization of multiscale surfaces [J]. Wear, 1986(1):127-134.
[7] El-SONBATY I A, KHASHABA U A, SELMY A I. Prediction of surface roughness profiles for milled surfaces using an artificial neural network and fractal geometry approach [J]. Journal of Materials Processing Technology, 2008, (1/2/3):271-278.doi:10.1016/j.jmatprotec.2007.09.006.
[8] 朱华, 葛世荣, 陈国安. 磨合表面形貌变化的分形表征 [J]. 机械工程学报, 2001(5):68-71.doi:10.3321/j.issn:0577-6686.2001.05.016.
[9] 葛世荣, 索双富. 表面轮廓分形维数计算方法的研究 [J]. 摩擦学学报, 1997(4):354-362.
[10] 王建军, 魏宗信. 粗糙表面轮廓分形维数的计算方法 [J]. 工具技术, 2006(8):73-75.doi:10.3969/j.issn.1000-7008.2006.08.023.
[11] 李成贵, 刘杰. 机械加工表面轮廓分形维数的两种计算方法 [J]. 航空精密制造技术, 1997(4):25-27.
[12] 韩正铜, 张永忠, 黄民. 磨削过程振动特征的实验研究 [J]. 制造技术与机床, 2004(2):63-65.doi:10.3969/j.issn.1005-2402.2004.02.022.
[13] 费斌, 王海容, 蒋庄德. 机械加工表面分形特性的研究 [J]. 西安交通大学学报, 1998(5):83-86.
[14] 潘玉良, 吴立群, 张云电. 分形模型参数与粗糙度参数Ra关系的研究 [J]. 中国工程科学, 2004(5):49-51.doi:10.3969/j.issn.1009-1742.2004.05.009.

备注/Memo

备注/Memo:
福建省高新技术开发研究计划重点项目(2005H035); 福建省自然科学基金计划资助项目(A0610020)
更新日期/Last Update: 2014-03-23