[1]许国安,余赞平.具有转向点的奇摄动二阶拟线性边值问题[J].华侨大学学报(自然科学版),2010,31(3):346-350.[doi:10.11830/ISSN.1000-5013.2010.03.0346]
 XU Guo-an,YU Zan-ping.Singular Perturbation of Second Order Quasilinear Boundary Value Problem with Turning Point[J].Journal of Huaqiao University(Natural Science),2010,31(3):346-350.[doi:10.11830/ISSN.1000-5013.2010.03.0346]
点击复制

具有转向点的奇摄动二阶拟线性边值问题()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第31卷
期数:
2010年第3期
页码:
346-350
栏目:
出版日期:
2010-05-20

文章信息/Info

Title:
Singular Perturbation of Second Order Quasilinear Boundary Value Problem with Turning Point
文章编号:
1000-5013(2010)03-0346-05
作者:
许国安余赞平
华侨大学数学科学学院; 福建师范大学数学与计算机科学学院
Author(s):
XU Guo-an1 YU Zan-ping2
1.School of Mathematical Sciences, Huaqiao University, Quanzhou 362021, China; 2.School of Mathematics and Computer Science, Fujian Normal University, Fuzhou 350007, China
关键词:
转向点 边值问题 奇摄动 二阶拟线性
Keywords:
turning point boundary value problem singular perturbation seand order quasilinear
分类号:
O175.14
DOI:
10.11830/ISSN.1000-5013.2010.03.0346
文献标志码:
A
摘要:
研究具有转向点的奇摄动二阶拟线性边值问题.在缺乏弱稳定的条件下,考虑具有转向点的二阶拟线性边值问题,利用经典的上、下解方法,证明边值问题解的存在性,并给出了解的一致有效估计.
Abstract:
In this paper,we study the singularly perturbation of second order quasilinear boundary value problem with turning point.Under the lost of weakness stability,using the method of upper and lower solution,we prove the existence of solutions and get the uniformly valid asymptotic estimation of solutions.

参考文献/References:

[1] NAYFEH A H. Perturbation methods [M]. New York:wiley, 1973.
[2] O’MALLEY R E Jr. Introduction to singular perturbations [M]. New York:Academic Press, Inc, 1974.
[3] 周软德. 具有转向点的奇摄动边值问题 [J]. 东北数学(英文版), 1986(1):100-110.
[4] 蔡建平, 林宗池. 具有转向点的三阶半线性奇摄动边值问题解的存在性 [J]. 应用数学和力学, 1993, (12):1035-1039.
[5] 吴钦宽, 张祥. 具有转向点的奇摄动非线性边值问题解的一致有效估计 [J]. 应用数学, 1995(2):231-238.
[6] 章国华, 侯斯 F A. 非线性奇异摄动现象:理论和应用 [M]. 福州:福建科学技术出版社, 1989.6-15, 28-31.
[7] 吴钦宽. 一类奇摄动非线性边值问题激波解的间接匹配 [J]. 华侨大学学报(自然科学版), 2006(2):123-125.doi:10.3969/j.issn.1000-5013.2006.02.003.

相似文献/References:

[1]曾文平.解两类特殊三对角线性方程组的修正追赶法[J].华侨大学学报(自然科学版),1984,5(2):20.[doi:10.11830/ISSN.1000-5013.1984.02.0020]
[2]梁学信,吴在德.一类退缩反应扩散方程解的有界性与衰减估计[J].华侨大学学报(自然科学版),1988,9(4):434.[doi:10.11830/ISSN.1000-5013.1988.04.0434]
 Liang Xuexin,Wu Zaide.The Boundedness and Decay Estimate of the Solutions for a Class Degenerate Reaction Diffusion Equations[J].Journal of Huaqiao University(Natural Science),1988,9(3):434.[doi:10.11830/ISSN.1000-5013.1988.04.0434]
[3]邹黄辉,王全义.非线性奇异三阶两点边值问题单调正解的存在性[J].华侨大学学报(自然科学版),2012,33(6):699.[doi:10.11830/ISSN.1000-5013.2012.06.0699]
 ZOU Huang-hui,WANG Quan-yi.Existence on Monotone Positive Solutions for Nonlinear Singular Third Order Two-Point Boundary Value Problems[J].Journal of Huaqiao University(Natural Science),2012,33(3):699.[doi:10.11830/ISSN.1000-5013.2012.06.0699]
[4]陈东晓,陈应生.二阶微分方程积分边值问题正解的存在性[J].华侨大学学报(自然科学版),2013,34(5):586.[doi:10.11830/ISSN.1000-5013.2013.05.0586]
 CHEN Dong-xiao,CHEN Ying-sheng.Existence Positive Solutions of Boundary Value Problems for Second Order Differential Equations with Integral Conditions[J].Journal of Huaqiao University(Natural Science),2013,34(3):586.[doi:10.11830/ISSN.1000-5013.2013.05.0586]
[5]杨军,刘东利.高阶分数阶微分方程边值问题解的存在性[J].华侨大学学报(自然科学版),2013,34(6):716.[doi:10.11830/ISSN.1000-5013.2013.06.0716]
 YANG Jun,LIU Dong-li.Existence of Solutions for Boundary Value Problem of Fractional High-Order Differential Equations[J].Journal of Huaqiao University(Natural Science),2013,34(3):716.[doi:10.11830/ISSN.1000-5013.2013.06.0716]
[6]王全义,邹黄辉.一类n阶非线性三点边值问题单调正解的存在性[J].华侨大学学报(自然科学版),2014,35(3):344.[doi:10.11830/ISSN.1000-5013.2014.03.0344]
 WANG Quan-yi,ZOU Huang-hui.Monotone Positive Solutions for A Class of nth Order Nonlinear Three-Point Boundary Value Problems[J].Journal of Huaqiao University(Natural Science),2014,35(3):344.[doi:10.11830/ISSN.1000-5013.2014.03.0344]
[7]许国安,余赞平.具有多个转向点的奇摄动二阶拟线性边值问题[J].华侨大学学报(自然科学版),2015,36(预先出版):0.
 XU Guo-an,YU Zan-ping.Singular Perturbation Second Order Quasilinear Boundary Value Problem with Multi-turning Point[J].Journal of Huaqiao University(Natural Science),2015,36(3):0.
[8]许国安,余赞平.具有多个转向点的奇摄动二阶拟线性边值问题[J].华侨大学学报(自然科学版),2014,35(4):472.[doi:10.11830/ISSN.1000-5013.2014.04.0472]
 XU Guo-an,YU Zan-ping.Singular Perturbation Second Order Quasilinear Boundary Value Problem with Multi-Turning Point[J].Journal of Huaqiao University(Natural Science),2014,35(3):472.[doi:10.11830/ISSN.1000-5013.2014.04.0472]

备注/Memo

备注/Memo:
国务院侨办科研基金资助项目(07QZR09,09QZR10)
更新日期/Last Update: 2014-03-23