[1]刘云辉,李钟慎.改进型模糊神经网络模型的构造[J].华侨大学学报(自然科学版),2010,31(3):256-259.[doi:10.11830/ISSN.1000-5013.2010.03.0256]
 LIU Yun-hui,LI Zhong-shen.Construction of Improved Fuzzy Neural Network Model[J].Journal of Huaqiao University(Natural Science),2010,31(3):256-259.[doi:10.11830/ISSN.1000-5013.2010.03.0256]
点击复制

改进型模糊神经网络模型的构造()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第31卷
期数:
2010年第3期
页码:
256-259
栏目:
出版日期:
2010-05-20

文章信息/Info

Title:
Construction of Improved Fuzzy Neural Network Model
文章编号:
1000-5013(2010)03-0256-04
作者:
刘云辉李钟慎
华侨大学机电及自动化学院
Author(s):
LIU Yun-hui LI Zhong-shen
College of Mechanical Engineering and Automation, Huaqiao University, Quanzhou 362021, China
关键词:
模糊神经网络模型 模糊神经元 学习规则 状态监测
Keywords:
fuzzy neural network model fuzzy neurons learning algorithm state monitoring
分类号:
TP183
DOI:
10.11830/ISSN.1000-5013.2010.03.0256
文献标志码:
A
摘要:
利用模糊系统和神经网络的优势,构造一种改进型模糊神经网络模型.从极大-极小模糊算子的模糊神经元入手,提出改进的修改模糊权值的训练学习规则.改进后的模糊神经网络模型大大减少了运算量,提高了收敛速度.采用此学习算法对实际汽轮发电机组运行状态进行监测,结果表明,模型具有较强的状态监测能力,达到预期的目的.
Abstract:
The advantages of fuzzy system and neural network are taken to establish a kind of improved fuzzy neural network(FNN) models.An improved learning algorithm with the modified fuzzy weight is proposed on the basis of the fuzzy neurons model for the max-min fuzzy operator.The amount of calculation for the improved FNN model is reduced greatly and the convergence velocity is improved.The state monitoring of the practical turbo generator unit is run using the learning algorithm,and the results have indicated that the model has greater capability of state monitoring and the expected goal is obtained.

参考文献/References:

[1] 高隽. 智能信息处理方法导论 [M]. 北京:机械工业出版社, 2004.
[2] 韩力群. 人工神经网络理论、设计及应用 [M]. 北京:化学工业出版社, 2002.
[3] 张乃尧, 阎平凡. 神经网络与模糊控制 [M]. 北京:清华大学出版社, 1998.
[4] 朱晓铭, 王士同. 单体模糊神经网络的学习规则及其收敛性研究 [J]. 计算机研究与发展, 2001(9):1057-1060.
[5] WANG Shi-tong. Fuzzy basis functions, fuzzy neural network, and the new hybrid learning algorithm [J]. Journal of Software Research, 1999(3):325-334.
[6] YAN Shi, MASAHARU M. Some considerations on conventional neural-fuzzy learning algorithms by gradient descent method [J]. Fuzzy Sets and Systems, 2000(1):51-63.doi:10.1016/S0165-0114(98)00056-6.
[7] 钟诗胜, 朴树学, 丁刚. 改进BP算法在过程神经网络中的应用 [J]. 哈尔滨工业大学学报, 2006(6):840-842.doi:10.3321/j.issn:0367-6234.2006.06.003.
[8] 吴今培, 肖健华. 智能故障诊断与专家系统 [M]. 北京:科学出版社, 1997.
[9] 苏金泷, 戴在平. 模糊神经网络的极点配置自校正滤波器 [J]. 华侨大学学报(自然科学版), 2004(3):310-314.doi:10.3969/j.issn.1000-5013.2004.03.021.

备注/Memo

备注/Memo:
福建省自然科学基金资助项目(E0710018)
更新日期/Last Update: 2014-03-23