[1]温琴珠.量子环面上的斜导子李代数模的导子[J].华侨大学学报(自然科学版),2009,30(5):585-589.[doi:10.11830/ISSN.1000-5013.2009.05.0585]
 WEN Qin-zhu.The Derivations From the Lie Algebra of Skew Derivations on Quantum Torus to Its Modules[J].Journal of Huaqiao University(Natural Science),2009,30(5):585-589.[doi:10.11830/ISSN.1000-5013.2009.05.0585]
点击复制

量子环面上的斜导子李代数模的导子()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第30卷
期数:
2009年第5期
页码:
585-589
栏目:
出版日期:
2009-09-20

文章信息/Info

Title:
The Derivations From the Lie Algebra of Skew Derivations on Quantum Torus to Its Modules
文章编号:
1000-5013(2009)05-0585-05
作者:
温琴珠
华侨大学数学科学学院
Author(s):
WEN Qin-zhu
School of Mathematical Sciences, Huaqiao University, Quanzhou 362021, China
关键词:
斜导子 李代数 量子环面 一上同调群
Keywords:
skew derivation Lie algebra modules quantum torus the first cohomology group
分类号:
O152.5
DOI:
10.11830/ISSN.1000-5013.2009.05.0585
文献标志码:
A
摘要:
记L为量子环面上的斜导子李代数,研究李代数L-模的导子集的结构.通过对导子集中的元素的线性分析,得到从L到L-模Fgα(V)的导子,以及一上同调群H1(L,Fgα(V)).
Abstract:
Denote the skew derivation Lie algebra over the rank 2 quanturn torus by L,the structure of the derivations of modules over Lie algebra L is studied.By the analysis of linear relationships among derivations,we obtain the derivations from L to L-modules Fαg(V) and give the first cohomology group H1(L,Fαg(V)).

参考文献/References:

[1] SHEN Guang-yu. Graded modules of graded Lie algebras of cartan type(Ⅰ) [J]. Scientica Sinica, 1986(6):570-581.
[2] RAO S E. Irreducible reqresentations of the Lie-algebra of the diffeomorphisms of ad-dimensional torus [J]. Journal of Algebra, 1996(2):401-421.
[3] 林卫强, 谭绍滨. 量子环面上斜导子李代数的表示 [J]. 数学进展, 2005(4):477-487.doi:10.3969/j.issn.1000-0917.2005.04.012.
[4] WANG Q, TAN S. First cohomology group from the virasoro-like algebra to its larsson functor module [J]. Communications in Algebra, 2007, (12):4163-4174.doi:10.1080/00927870701544971.
[5] FARNSTEINER R. Derivations and central extentions of finitely generated graded Lie algebras [J]. Journal of Algebra, 1988(1):33-45.

备注/Memo

备注/Memo:
华侨大学科研基金资助项目(06HZR05)
更新日期/Last Update: 2014-03-23