[1]田树耀,黄富贵,张彬.一种基于区域搜索的平面度误差评定方法[J].华侨大学学报(自然科学版),2009,30(5):506-508.[doi:10.11830/ISSN.1000-5013.2009.05.0506]
 TIAN Shu-yao,HUANG Fu-gui,ZHANG Bin.An Evaluation Method for Flatness Error Based on Region Searching[J].Journal of Huaqiao University(Natural Science),2009,30(5):506-508.[doi:10.11830/ISSN.1000-5013.2009.05.0506]
点击复制

一种基于区域搜索的平面度误差评定方法()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第30卷
期数:
2009年第5期
页码:
506-508
栏目:
出版日期:
2009-09-20

文章信息/Info

Title:
An Evaluation Method for Flatness Error Based on Region Searching
文章编号:
1000-5013(2009)05-0506-03
作者:
田树耀黄富贵张彬
华侨大学机电及自动化学院
Author(s):
TIAN Shu-yao HUANG Fu-gui ZHANG Bin
College of Mechanical Engineering and Automation, Huaqiao University, Quanzhou 362021, China
关键词:
平面度误差 评定 最小区域法 最小二乘法 区域搜索
Keywords:
flatness error evaluation minimum zone method least square method region searching
分类号:
TG83
DOI:
10.11830/ISSN.1000-5013.2009.05.0506
文献标志码:
A
摘要:
以给定平面度误差的评定为例,分析最小二乘法和最小包容区域法的算法模型,并提出一种基于区域搜索的评定平面度误差的方法.在三坐标测量机上,对被测平面进行采样点坐标数据提取,分别用基于搜索逼近法的最小二乘法和最小包容区域法实现给定平面度误差的评定.结果表明,基于搜索逼近法的最小包容区域法与最小二乘法相比,其评定结果精度提高了5.97%,且符合最小条件.
Abstract:
The algorithm models in least square method and minimum zone method are analyzed,in which the evaluation of the given flatness error is taken as an example,also and a method based on region searching to evaluate flatness error is proposed.The data extraction for the coordinates of the fitting nodes in the measured flatness on coordinate measuring machine is accomplished and the evaluation for the given flatness error is implemented by the least square method and minimum zone method based on searching approximation respectively.The results have shown that the evaluation precision of the minimum zone method based on searching approximation is 5.97% higher than that of least square method which conforms to the smallest condition.

参考文献/References:

[1] CHERAHI S H, LIN H S, MOTAVALLI S. Straightness and flatness tolerance evaluation:An optimization approach [J]. Precision Engineering, 1996(1):30-37.doi:10.1016/0141-6359(95)00033-X.
[2] LEE M K. A new convex-hull based approach to evaluating flatness tolerance [J]. Computer-Aided Design, 1997, (12):861-868.doi:10.1016/S0010-4485(97)00041-9.
[3] 薛小强. 平面度误差的精确最小域解 [J]. 机械设计与制造工程, 2002(5):82-83.doi:10.3969/j.issn.1672-1616.2002.05.036.
[4] 张之江, 于瀛洁, 张善钟. 平面度误差最小区域新算法--有序判别法 [J]. 计量学报, 1998(1):15-21.doi:10.3321/j.issn:1000-1158.1998.01.003.
[5] 费业泰. 误差理论与数据处理 [M]. 北京:机械工业出版社, 2004.
[6] 黄富贵, 崔长彩. 直线度误差的最小二乘法与最小包容区域法评定精度之比较 [J]. 光学精密工程, 2007(6):889-893.doi:10.3321/j.issn:1004-924X.2007.06.015.

相似文献/References:

[1]崔长彩,张耕培,傅师伟,等.利用粒子群优化算法的平面度误差评定[J].华侨大学学报(自然科学版),2008,29(4):507.[doi:10.11830/ISSN.1000-5013.2008.04.0507]
 CUI Chang-cai,ZHANG Geng-pei,FU Shi-wei,et al.Particle Swarm Optimization-Based Flatness Evaluation[J].Journal of Huaqiao University(Natural Science),2008,29(5):507.[doi:10.11830/ISSN.1000-5013.2008.04.0507]
[2]王宇,黄富贵,李兴旺.平面度误差统计特征实验[J].华侨大学学报(自然科学版),2014,35(5):487.[doi:10.11830/ISSN.1000-5013.2014.05.0487]
 WANG Yu,HUANG Fu-gui,LI Xing-wang.Experiment on Flatness Error Statistical Characterization[J].Journal of Huaqiao University(Natural Science),2014,35(5):487.[doi:10.11830/ISSN.1000-5013.2014.05.0487]

备注/Memo

备注/Memo:
国务院侨办科研基金资助项目(03QZR03)
更新日期/Last Update: 2014-03-23