[1]陈丙三,黄宜坚.分数阶在磁流变液性能研究中的应用[J].华侨大学学报(自然科学版),2009,30(5):487-491.[doi:10.11830/ISSN.1000-5013.2009.05.0487]
 CHEN Bing-san,HUANG Yi-jian.Application of Fractional Calculus on the Study of Magnetorheological Fluids’ Characterization[J].Journal of Huaqiao University(Natural Science),2009,30(5):487-491.[doi:10.11830/ISSN.1000-5013.2009.05.0487]
点击复制

分数阶在磁流变液性能研究中的应用()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第30卷
期数:
2009年第5期
页码:
487-491
栏目:
出版日期:
2009-09-20

文章信息/Info

Title:
Application of Fractional Calculus on the Study of Magnetorheological Fluids’ Characterization
文章编号:
1000-5013(2009)05-0487-05
作者:
陈丙三黄宜坚
华侨大学机电工程学院
Author(s):
CHEN Bing-san HUANG Yi-jian
College of Mechanical Engineering and Automation, Huaqiao University, Quanzhou 362021, China
关键词:
磁流变液 分数阶 本构方程 Maxwell模型
Keywords:
magnetorheological fluids fractional calculus constitutive equations modified Maxwell model
分类号:
TB381
DOI:
10.11830/ISSN.1000-5013.2009.05.0487
文献标志码:
A
摘要:
将分数阶微积分引入Maxwell粘弹性流体的本构方程中,建立修正的Maxwell模型以描述磁流变液.通过贮能模量和耗能模量曲线,研究磁流变液的阻尼特性.在不同的磁流变液体组成参数实验条件下,理论的贮能模量和耗能模量能够与实验结果很好拟合,且模型阶数有着明显变化.研究表明,分数阶的本构方程能够很好地描述磁流变液的阻尼特性,方程分数阶算子与磁流变液物质参数有关.
Abstract:
Fractional calculus is introduced to study the constitutive equation of Maxwell viscoelasticity fluids,and establish the modified Maxwell model to describe the magnetorheological fluids(MR fluids for short).The curves for storage modulus and loss modulus are used here for the analysis of the damping characteristics of magnetorheological fluids.Under the different experiment conditions about the constituent parameters for MR fluids,the theoretical storage modulus and loss modulus can fit the corresponding experimental ones well,and the orders of the model are changed remarkably.It is indicated that the fractional calculus consititutive equation is available to describe the damping characteristics,and the fractional operators are connected to the parameters of the MR fluids.

参考文献/References:

[1] RABINOW J. The magnetic fluid clutch [J]. AIEE Transactions, 1948.1308-1315.
[2] 司鹄, 彭向和. 磁流变材料的流变性能研究 [J]. 材料科学与工程, 2002(1):61-63.doi:10.3969/j.issn.1673-2812.2002.01.018.
[3] FRIEDRICH C H R. Relaxation and retardation functions of the Maxwell model with fractional derivatives [J]. Rheologica Acta, 1991(2):151-158.doi:10.1007/BF01134604.
[4] 黄军旗, 刘慈群. 双筒流变仪中广义二阶流体运动分析 [J]. 中国科学A辑, 1996, (10):912-920.
[5] 谭文长, 鲜峰, 魏兰. 广义二阶流体非定常Couette流动的精确解 [J]. 科学通报, 2002, (16):1226-1228.doi:10.3321/j.issn:0023-074X.2002.16.005.
[6] 徐明瑜, 谭文长. 广义二阶流体分数阶反常扩散速度场、应力场及涡旋层的理论分析 [J]. 中国科学A辑, 2001(7):626-638.doi:10.3321/j.issn:1006-9232.2001.07.006.
[7] 徐明瑜, 谭文长. 黏弹性材料本构方程的广义分数阶单元网格表述及其广义解 [J]. 中国科学A辑, 2002(8):673-681.doi:10.3321/j.issn:1006-9232.2002.08.001.
[8] SONG D Y, JIANG T Q. Study on the constitutive equation with fractional derivative for the vicoelasticfluids-modified Jeffreys model and its application [J]. Rheologica Acta, 1998(5):512-517.doi:10.1007/s003970050138.
[9] 同登科, 王瑞和, 杨河山. 管内非Newton流体分数阶流动的精确解 [J]. 中国科学G辑, 2005, (35):318-326.doi:10.3969/j.issn.1674-7275.2005.03.009.
[10] ROSS B. Lecture notes in mathematics 457:Fractional calculus and its applications [M]. Beilin:Springer-Verlag, 1975.
[11] OLDHAM K B, SPANIER J. The fractional calculus [M]. New York:Academic Press, Inc, 1974.
[12] 张为民, 张淳源, 张平. 考虑老化的混凝土粘弹性分数导数模型 [J]. 应用力学学报, 2004(1):1-4.doi:10.3969/j.issn.1000-4939.2004.01.001.
[13] 江体乾. 化工流变学 [M]. 上海:华东理工大学出版社, 2004.

备注/Memo

备注/Memo:
福建省高新技术开发研究计划重点项目(2005H035)
更新日期/Last Update: 2014-03-23