[1]邓勇,张金顺.高阶Levi方程的Painlevé测试和精确解[J].华侨大学学报(自然科学版),2009,30(4):476-477.[doi:10.11830/ISSN.1000-5013.2009.04.0476]
 DENG Yong,ZHANG Jin-shun.The Painlevé Test for Higher Order Levi Equation and Its Solution[J].Journal of Huaqiao University(Natural Science),2009,30(4):476-477.[doi:10.11830/ISSN.1000-5013.2009.04.0476]
点击复制

高阶Levi方程的Painlevé测试和精确解()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第30卷
期数:
2009年第4期
页码:
476-477
栏目:
出版日期:
2009-07-20

文章信息/Info

Title:
The Painlevé Test for Higher Order Levi Equation and Its Solution
文章编号:
1000-5013(2009)04-0476-02
作者:
邓勇张金顺
华侨大学数学科学学院
Author(s):
DENG Yong ZHANG Jin-shun
School of Mathematical Sciences, Huaqiao University, Quanzhou 362021, China
关键词:
高阶Levi方程组 Painlevé测试 调谐因子 相容性 Schwarz导数
Keywords:
higher order Levi equation Painlevé test resonances consistency Schwarzian derivative
分类号:
O241.82
DOI:
10.11830/ISSN.1000-5013.2009.04.0476
文献标志码:
A
摘要:
利用Painlevé分析的方法,将高阶Levi方程进行奇异流型展开.利用调谐因子项将其进行有限项"截断",证明其具有Painlevé可积性,导出其Darboux-Backlund变换和奇异流型所满足的Schwarz导数方程.通过求解Schwarz方程,得到高阶Levi方程组的一类精确解.
Abstract:
Using Painlevé test,the higher order Levi equation is considered.The integrable property is proved,and the Darboux-Backlund transformation of the equation is obtained.Some exact solutions of the equation are gotten by means of Schwarzian derivative equation.

参考文献/References:

[1] WU Yong-tang, ZHANG Jin-shun. Quasi-periodic solution of a new (2+1)-dimensional coupled equation [J]. J Phys(A):Math Gen, 2001(1):193-210.
[2] WEISS J, TABOR M, CARNEVALE G. The Painlevé property for partial differential equations [J]. Journal of Mathematical Physics, 1983(6):522-526.
[3] STEEB W H. Nonlinear evolution equations and Painlevé test [J]. New Jersey:World Scientific, 1998.

备注/Memo

备注/Memo:
国家自然科学基金资助项目(10871165); 国务院侨办科研基金资助项目(06QZR12); 华侨大学高层次人才科研启动项目(07BS106)
更新日期/Last Update: 2014-03-23