[1]吴志湖,陈尔明.回归时间局部熵的多重分形谱的上界估计[J].华侨大学学报(自然科学版),2009,30(4):468-472.[doi:10.11830/ISSN.1000-5013.2009.04.0468]
 WU Zhi-hu,CHEN Er-ming.The Upper Estimate on the Multifractal Spectrum of Local Entropies for Recurrence Time[J].Journal of Huaqiao University(Natural Science),2009,30(4):468-472.[doi:10.11830/ISSN.1000-5013.2009.04.0468]
点击复制

回归时间局部熵的多重分形谱的上界估计()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第30卷
期数:
2009年第4期
页码:
468-472
栏目:
出版日期:
2009-07-20

文章信息/Info

Title:
The Upper Estimate on the Multifractal Spectrum of Local Entropies for Recurrence Time
文章编号:
1000-5013(2009)04-0468-05
作者:
吴志湖陈尔明
华侨大学数学科学学院
Author(s):
WU Zhi-hu CHEN Er-ming
School of Mathematical Sciences, Huaqiao University, Quanzhou 362021, China
关键词:
回归时间 局部熵 多重分形谱 上界估计
Keywords:
recurrence time local entropy multifractal spectrum upper boundary estimate
分类号:
O212.1
DOI:
10.11830/ISSN.1000-5013.2009.04.0468
文献标志码:
A
摘要:
研究关于回归时间的局部熵的多重分形谱,利用广义熵和熵容量得到关于回归时间的局部熵的多重分形谱的两种上界估计.同时,研究回归时间的局部熵的多重分形谱的定义域.
Abstract:
The problem of the multifractal spectrum of local entropies for recurrence time is researched.By using the general entropies and entropy capacities,we obtain two upper estimates on the multifractal spectrum of local entropies for recurrence time,and the domain of the multifractal spectrum is also studied.

参考文献/References:

[1] EYINK G L. Multifractals and lagrangian field theory [J]. Chaos, Solitons & Fractals, 1995(8):1465-1473.
[2] BARREURA L. On a general concept of multifractality:Multifractal spectra for dimension, entropies and Lyapunov exponents:Multifractal rigidity [J]. Chaos, Solitons and Fractals, 1997(1):27-38.
[3] YAN Zhen-zhen, CHEN Er-cai. Multifractal analysis of local entropies for recurrence time [J]. Chaos, Solitons & Fractals, 2007(5):1584-1591.doi:10.1016/j.chaos.2006.03.025.
[4] FLORIS T, EVGENY V. General multifractal analysis of local entropies [J]. Fundament Mathematics, 2000.203-237.
[5] BOWEB R. Topological entropy for noncompact sets [J]. Transactions of the American Mathematical Society, 1973.125-36.
[6] PESIN Y. Dimension theory in dynamical system [M]. Chicago:The University of Chicago Press, 1997.
[7] ROBERTS A W, VARBERG D E. Convex functions [M]. New York:Academic Press, Inc, 1973.

备注/Memo

备注/Memo:
福建省自然科学基金资助项目(S0650017)
更新日期/Last Update: 2014-03-23