[1]张星,单双荣.解二阶抛物型方程的一族高精度恒稳格式[J].华侨大学学报(自然科学版),2009,30(2):229-232.[doi:10.11830/ISSN.1000-5013.2009.02.0229]
 ZHANG Xing,SHAN Shuang-rong.A Group of Steady Difference Schemes with High Accuracy for Solving Two-Order Parabolic Equation[J].Journal of Huaqiao University(Natural Science),2009,30(2):229-232.[doi:10.11830/ISSN.1000-5013.2009.02.0229]
点击复制

解二阶抛物型方程的一族高精度恒稳格式()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第30卷
期数:
2009年第2期
页码:
229-232
栏目:
出版日期:
2009-03-20

文章信息/Info

Title:
A Group of Steady Difference Schemes with High Accuracy for Solving Two-Order Parabolic Equation
文章编号:
1000-5013(2009)02-0229-04
作者:
张星单双荣
华侨大学数学科学学院
Author(s):
ZHANG Xing SHAN Shuang-rong
School of Mathematics Science, Huaqiao University, Quanzhou 362021, China
关键词:
二阶抛物型方程 差分格式 绝对稳定 截断误差
Keywords:
two-order parabolic equation difference scheme absolutely stable truncation error
分类号:
O241.82
DOI:
10.11830/ISSN.1000-5013.2009.02.0229
文献标志码:
A
摘要:
对二阶抛物型方程构造了一族含参数高精度三层差分格式.当参数满足一定的条件时,差分格式绝对稳定,其局部截断误差阶数最高可达O(2τ+h4).适当地调节参数,可以得到一个七点显式差分格式和一个两层六点隐格式.数值例子表明,对稳定性所作的分析是正确的.
Abstract:
A family of high-accurate and three-layer difference schemes containing parameters are constructed for solving two-order parabolic equation.These difference schemes are stable when the parameters satisfy a certain condition.The local truncation error can reach the order of O(τ2+h4).The analysis of stability is consistent as illustrated by numerical example.

参考文献/References:

[1] 陈传淡, 林群. 一族绝对稳定的差分格式 [J]. 厦门大学学报(自然科学版), 1983(3):275-279.
[2] 周顺兴. 解抛物型偏微分方程的高精度差分格式 [J]. 计算数学, 1982(2):204-213.
[3] 金承日. 解抛物型方程的高精度显式格式 [J]. 计算数学, 1991(1):38-44.
[4] MILLER J J H. On the location of zeros of certain classes of polynomials with application to numerical analysis [J]. Journal of the Institute of Mathematics and Its Applications, 1971.394-406.
[5] RICHTMYER R D, MORTON K W. Difference method for initial-value problems [M]. New York:wiley, 1967.59-91.

相似文献/References:

[1]梁敏.带耗散的气体动力学方程组的广义解存在性定理[J].华侨大学学报(自然科学版),1985,6(4):376.[doi:10.11830/ISSN.1000-5013.1985.04.0376]
 Liang Min.The Existent Theorems of Generalized Solutions for the Systems of Gas Dynamics with Dissipation[J].Journal of Huaqiao University(Natural Science),1985,6(2):376.[doi:10.11830/ISSN.1000-5013.1985.04.0376]
[2]曹文平.高阶Schrodinger方程的一类半隐式差分格式[J].华侨大学学报(自然科学版),1995,16(4):358.[doi:10.11830/ISSN.1000-5013.1995.04.0358]
 Zeng Wenping.A Class of Semi-Implicit Difference Schemes for Schrodinger Type Equation of Higher Order[J].Journal of Huaqiao University(Natural Science),1995,16(2):358.[doi:10.11830/ISSN.1000-5013.1995.04.0358]
[3]曾文平.对流方程的一类新的恒稳差分格式[J].华侨大学学报(自然科学版),1997,18(3):225.[doi:10.11830/ISSN.1000-5013.1997.03.0225]
 Zeng Wenping.A Class of New Steady Difference Schemes for Convective Equation[J].Journal of Huaqiao University(Natural Science),1997,18(2):225.[doi:10.11830/ISSN.1000-5013.1997.03.0225]
[4]曾文平.解二维抛物型方程的恒稳高精度格式[J].华侨大学学报(自然科学版),1999,20(1):18.[doi:10.11830/ISSN.1000-5013.1999.01.0018]
 Zeng Wenping.A Family of Steady and High Accurate Difference Schemes for Solving Two Dimensional Equations of Parabolic Type[J].Journal of Huaqiao University(Natural Science),1999,20(2):18.[doi:10.11830/ISSN.1000-5013.1999.01.0018]
[5]黄浪扬,曾文平.抛物型方程的一族高精度恒稳格式[J].华侨大学学报(自然科学版),2000,21(2):124.[doi:10.3969/j.issn.1000-5013.2000.02.004]
 Huang langyang,Zeng Wenping.A Group of Steady Difference Schemes wth High Accuracy for Solving Parabolic Equation[J].Journal of Huaqiao University(Natural Science),2000,21(2):124.[doi:10.3969/j.issn.1000-5013.2000.02.004]
[6]陈世平,曾文平.对流方程的一族高精度恒稳格式[J].华侨大学学报(自然科学版),2001,22(2):122.[doi:10.3969/j.issn.1000-5013.2001.02.003]
 Chen Shiping,Zeng Wenping.A Group of Steady Schemes with High Accuracy for Solving Convective Equation[J].Journal of Huaqiao University(Natural Science),2001,22(2):122.[doi:10.3969/j.issn.1000-5013.2001.02.003]
[7]单双荣.高阶Schringer方程的显式差分格式[J].华侨大学学报(自然科学版),2002,23(1):12.[doi:10.3969/j.issn.1000-5013.2002.01.003]
 Shan Shuangrong.Explicit Difference Schemes for Solving Higher-Order Schringer Equation[J].Journal of Huaqiao University(Natural Science),2002,23(2):12.[doi:10.3969/j.issn.1000-5013.2002.01.003]
[8]曾文平.抛物型方程的一族双参数高精度恒稳格式[J].华侨大学学报(自然科学版),2002,23(4):327.[doi:10.3969/j.issn.1000-5013.2002.04.001]
[9]单双荣.解四阶抛物型方程的高精度差分格式[J].华侨大学学报(自然科学版),2003,24(1):11.[doi:10.3969/j.issn.1000-5013.2003.01.002]
 Shan Shuangrong.Difference Schemes of High Accuracy for SolvingParabolic Equation of Four Order[J].Journal of Huaqiao University(Natural Science),2003,24(2):11.[doi:10.3969/j.issn.1000-5013.2003.01.002]
[10]曾文平.对流方程一族新的三层双参数高精度格式[J].华侨大学学报(自然科学版),2003,24(1):22.[doi:10.3969/j.issn.1000-5013.2003.01.004]
 Zeng Wenping.A New Family of Three-Layer and Bi-Parametric Difference Schemes with High Accuracy for Solving Convection Equation[J].Journal of Huaqiao University(Natural Science),2003,24(2):22.[doi:10.3969/j.issn.1000-5013.2003.01.004]
[11]徐金平,单双荣.解抛物型方程的一个高精度显式差分格式[J].华侨大学学报(自然科学版),2009,30(4):473.[doi:10.11830/ISSN.1000-5013.2009.04.0473]
 XU Jin-ping,SHAN Shuang-rong.An Explicit Difference Scheme with High-Order Accuracy for Solving Parabolic Equation[J].Journal of Huaqiao University(Natural Science),2009,30(2):473.[doi:10.11830/ISSN.1000-5013.2009.04.0473]

备注/Memo

备注/Memo:
国务院侨办科研基金资助项目(04QZR09)
更新日期/Last Update: 2014-03-23