[1]周克民,李霞.长悬臂桁架受横向集中力的拓扑优化[J].华侨大学学报(自然科学版),2009,30(1):80-84.[doi:10.11830/ISSN.1000-5013.2009.01.0080]
 ZHOU Ke-min,LI Xia.Topological Optimum of Long Cantilever Truss under Transverse Concentrated Load[J].Journal of Huaqiao University(Natural Science),2009,30(1):80-84.[doi:10.11830/ISSN.1000-5013.2009.01.0080]
点击复制

长悬臂桁架受横向集中力的拓扑优化()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第30卷
期数:
2009年第1期
页码:
80-84
栏目:
出版日期:
2009-01-20

文章信息/Info

Title:
Topological Optimum of Long Cantilever Truss under Transverse Concentrated Load
文章编号:
1000-5013(2009)01-0080-05
作者:
周克民李霞
华侨大学土木工程学院
Author(s):
ZHOU Ke-min LI Xia
College of Civil Engineering, Huaqiao University, Quanzhou 362021, China
关键词:
拓扑优化 结构优化 桁架 悬臂梁
Keywords:
structural optimization topology optimization truss cantilever
分类号:
TU323.4
DOI:
10.11830/ISSN.1000-5013.2009.01.0080
文献标志码:
A
摘要:
用解析方法推导拓扑优化最小重量长悬臂桁架.桁架在应力约束下,自由端受横向集中力作用,桁架宽度为常数,它的节长、结点坐标、腹杆和弦杆的角度,以及所有杆的横截面尺寸均为设计变量.分析结果表明,拓扑优化桁架中的各节腹杆的位置和横截面面积相同,中间结点位于每节1/4位置.当结构长度趋于无限长时,腹杆趋于30°,60°,相对45°桁架的体积差别不大,与类桁架连续体的体积差别也很小.
Abstract:
Topology optimization design of long cantilever truss with minimum weight is derived analytically.A transverse concentrated load is applied at its free end.The truss with constant width is subjected to stress constraints.The panel lengths,nodal coordinates,the angles of the chords,the web members and the cross-sectional areas are taken as design variables.It is proved that there is no difference of the positions and the cross-sectional areas of web members between different panels in topological optimum truss.The middle nodes of web members locate at position of 1/4 of panel length.The topological optimum truss is similar to the truss with web members of 45 ° when the topological optimum truss tends to infinite long.The difference of volume between truss-like continuum and corresponding discrete truss is slight.

参考文献/References:

[1] ROZVANY G I N, BENDSΦE M P, KIRSCH U. Layout optimization of structures [J]. Applied Mechanics Reviews, 1995(2):41-119.doi:10.1115/1.3005097.
[2] ESCHENAUER H A, OLHOFF N. Topology optimization of continuum structures:A review [J]. Applied Mechanics Reviews, 2001(4):331-389.doi:10.1115/1.1388075.
[3] 王全凤. 结构优化设计的新进展 [J]. 华侨大学学报(自然科学版), 1992(3):353-357.
[4] BENDSΦE M P, KIKUCHI N. Generating optimal topologies in structural design using a homogenization method [J]. Computer Methods in Applied Mechanics and Engineering, 1988.197-224.
[5] XIE Y M, STEVEN G P. A simple evolutionary procedure for structures optimization [J]. Computers & Structures, 1993.885-896.
[6] OSHER S, FEDKIW R. Level set methods and dynamic implicit surfaces [M]. New York:springer-verlag, 2003.
[7] 刘书田, 程耿东. 复合材料应力分析的均匀化方法 [J]. 力学学报, 1997(3):306-313.
[8] 隋允康, 彭细荣. 结构拓扑优化ICM 方法的改善 [J]. 力学学报, 2005(2):190-198.doi:10.3321/j.issn:0459-1879.2005.02.010.
[9] LEWINSKI T, ZHOU M, ROZVANY G I N. Extended exact solutions for least-weight truss layouts(Ⅰ):Cantilever with a horizontal axis of symmetry [J]. International Journal of Mechanical Sciences, 1994(5):375-398.doi:10.1016/0020-7403(94)90043-4.
[10] LEWINSKI T, ZHOU M, ROZVANY G I N. Extended exact solutions for least-weight truss layouts(Ⅱ):Unsymmetric cantilevers [J]. International Journal of Mechanical Sciences, 1994(5):399-419.
[11] GRACZYKOWSKI C, LEWINSKI T. Michell cantilevers constructed within trapezoidal domains(Ⅰ):Geometry of Hencky nets [J]. Structural Optimization, 2006(5):347-368.
[12] GRACZULPWSLO C, LEWINSKI T. Michell cantilevers constructed within trapezoidal domains(Ⅱ):Virtual displacement fields [J]. Structural Optimization, 2006(6):347-368.
[13] GRACZULPWSLO C, LEWOMSLO T. Michell cantilevers constructed within trapezoidal domains(Ⅲ):Force fields [J]. Structural Optimization, 2006(1):1-19.
[14] GRACZULPWSLO C, LEWOMSLO T. Michell cantilevers constructed within trapezoidal domains(Ⅳ):Complete exact solutions of selected optimal designs and their approximations by trusses of finite number of joints [J]. Structural Optimization, 2006(2):113-129.
[15] HEMP W S. Optimum Structure [M]. Oxford:clarendon Press, 1973.
[16] ZHOU K, LI X. Topology optimization of structures under multiple load cases using fiber-reinforced composite material model [J]. Computational Mechanics, 2006(2):163-170.doi:10.1007/s00466-005-0735-9.
[17] BENDSΦE M P, BEN-TALAL A, ZOWE J. Optimization methods for truss geometry and topology design [J]. Structural Optimization, 1994.141-159.

相似文献/References:

[1]姚天长.球盘传动中蝶形簧的负荷特性与结构优化研究[J].华侨大学学报(自然科学版),1997,18(4):394.[doi:10.11830/ISSN.1000-5013.1997.04.0394]
[2]闫凯,周克民.用三角形单元建立拓扑优化类桁架连续体[J].华侨大学学报(自然科学版),2009,30(2):200.[doi:10.11830/ISSN.1000-5013.2009.02.0200]
 YAN Kai,ZHOU Ke-min.Topology Optimization of Truss-Like Continuum Structures by Triangle Elements[J].Journal of Huaqiao University(Natural Science),2009,30(1):200.[doi:10.11830/ISSN.1000-5013.2009.02.0200]
[3]闫凯,周克民.类桁架结构的多工况应力约束拓扑优化设计[J].华侨大学学报(自然科学版),2009,30(6):686.[doi:10.11830/ISSN.1000-5013.2009.06.0686]
 YAN Kai,ZHOU Ke-min.Topology Optimization of Truss-Like Structures for Multiple Load Cases With Stress Constraints[J].Journal of Huaqiao University(Natural Science),2009,30(1):686.[doi:10.11830/ISSN.1000-5013.2009.06.0686]
[4]李霞,周克民.位移最小化的抗风柱的拓扑优化设计[J].华侨大学学报(自然科学版),2013,34(4):449.[doi:10.11830/ISSN.1000-5013.2013.04.0449]
 LI Xia,ZHOU Ke-min.Topological Optimum Design of Wind Resistant Pillars with Minimal Displacement[J].Journal of Huaqiao University(Natural Science),2013,34(1):449.[doi:10.11830/ISSN.1000-5013.2013.04.0449]
[5]何少锋,周克民.序列线性规划方法优化应力约束类桁架结构[J].华侨大学学报(自然科学版),2013,34(6):691.[doi:10.11830/ISSN.1000-5013.2013.06.0691]
 HE Shao-feng,ZHOU Ke-min.Optimization of Truss-Like Structures with Stress Constraints by Sequence Linear Programming[J].Journal of Huaqiao University(Natural Science),2013,34(1):691.[doi:10.11830/ISSN.1000-5013.2013.06.0691]
[6]李奇,张勇,张成,等.灵敏度分析的客车车身模块重构与结构轻量化优化设计[J].华侨大学学报(自然科学版),2015,36(4):377.[doi:10.11830/ISSN.1000-5013.2015.04.0377]
 LI Qi,ZHANG Yong,ZHANG Cheng,et al.Module Reconfiguration and Structure Lightweight Optimization Design for Bus Body Based on the Sensitivity Analysis[J].Journal of Huaqiao University(Natural Science),2015,36(1):377.[doi:10.11830/ISSN.1000-5013.2015.04.0377]
[7]管梦雪,田琦,董旭,等.采用金属热强度性能指标的瓦楞板踢脚线散热器优化设计[J].华侨大学学报(自然科学版),2018,39(3):408.[doi:10.11830/ISSN.1000-5013.201712064]
 GUAN Mengxue,TIAN Qi,DONG Xu,et al.Optimization Design of Corrugated Board Skirting Board Radiator Using Metal Thermal Intensity Performance[J].Journal of Huaqiao University(Natural Science),2018,39(1):408.[doi:10.11830/ISSN.1000-5013.201712064]
[8]陈跃,吴璠,张赫男,等.相变蓄热水箱的性能优化模拟分析[J].华侨大学学报(自然科学版),2023,44(1):71.[doi:10.11830/ISSN.1000-5013.202208006]
 CHEN Yue,WU Fan,ZHANG Henan,et al.Performance Optimization Simulation Analysis of Phase-Change Heat Storage Tank[J].Journal of Huaqiao University(Natural Science),2023,44(1):71.[doi:10.11830/ISSN.1000-5013.202208006]

备注/Memo

备注/Memo:
国家自然科学基金资助项目(10872072); 教育部科技研究重点项目(208169); 福建省自然科学基金计划资助项目(E0640010)
更新日期/Last Update: 2014-03-23