[1]黄浪扬.广义Pochhammer-Chree方程的多辛Fourier拟谱格式及孤立波试验[J].华侨大学学报(自然科学版),2008,29(3):468-471.[doi:10.11830/ISSN.1000-5013.2008.03.0468]
 HUANG Lang-yang.Multi-Symplectic Fourier Pseudo-Spectral Scheme for Generalized Pochhammer-Chree Equation and Solitary Wave Experiments[J].Journal of Huaqiao University(Natural Science),2008,29(3):468-471.[doi:10.11830/ISSN.1000-5013.2008.03.0468]
点击复制

广义Pochhammer-Chree方程的多辛Fourier拟谱格式及孤立波试验()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第29卷
期数:
2008年第3期
页码:
468-471
栏目:
出版日期:
2008-07-20

文章信息/Info

Title:
Multi-Symplectic Fourier Pseudo-Spectral Scheme for Generalized Pochhammer-Chree Equation and Solitary Wave Experiments
文章编号:
1000-5013(2008)03-0468-04
作者:
黄浪扬
华侨大学数学科学学院 福建泉州362021
Author(s):
HUANG Lang-yang
School of Mathematics Sciences, Huaqiao University, Quanzhou 362021, China
关键词:
广义PC方程 多辛方程组 Fourier拟谱格式 多辛守恒律 孤立波试验
Keywords:
generalized PC equation multi-symplectic systems Fourier pseudo-spectral scheme multi-symplectic conservation laws solitary wave experiments
分类号:
O241.82
DOI:
10.11830/ISSN.1000-5013.2008.03.0468
文献标志码:
A
摘要:
通过变换,将广义Pochhammer-Chree(PC)方程转化为多辛形式的方程组.在空间方向利用Fourier拟谱方法,在时间方向利用Euler中点格式进行离散此方程组,得到广义PC方程的多辛Fourier拟谱格式及其离散多辛守恒律.孤立波的数值模拟试验验证所构造格式的有效性,以及广义PC方程的孤立波相互作用是非弹性的事实.
Abstract:
The multi-symplectic systems for the generalized Pochhammer-Chree(PC) equation are obtained by transformation.A multi-symplectic Fourier pseudo-spectral scheme are constructed by means of a Fourier pseudo-spectral method in space and an Euler mid-point method in time,At the same time,we get the full-discrete multi-symplectic conservation laws for the scheme.Numerical experiments show that the scheme constructed in this paper is effective,and indicate that the interaction of these solitary waves is inelastic.

参考文献/References:

[1] BRIDGES T J, REICH S. Multi-symplectic integrators:Numerical schemes for Hamiltonian PDEs that conserve symplecticity [J]. Physics Letters A, 2001, (4-5):184-193.
[2] BRIDGES T J. Multi-symplectic structures and wave propagation [J]. Mathematical Proceedings of the Cambridge Philosophical Society, 1997.147-190.doi:10.1017/S0305004196001429.
[3] REICH S. Multi-symplectic Runge-Kutta methods for Hamiltonian wave equations [J]. Journal of Computational Physics, 2000(5):473-499.
[4] BRIDGES T J, REICH S. Multi-symplectic spectral discretizations for the Zakharov-Kuznetsov and shallow water equations [J]. Physical Review D, 2001():491-504.doi:10.1016/S0167-2789(01)00188-9.
[5] CHEN Jing-bo, QIN Meng-zhao. Multi-symplectic Fourier pseudospectral method for the nonlinear Schrdinger equation [J]. ELECTRONIC TRANSACTIONS ON NUMERICAL ANALYSIS, 2001.193-204.
[6] BOGOLUBSKY L L. Some examples of inelastic solution interaction [J]. Computer Physics Communications, 1977(2):149-155.

相似文献/References:

[1]黄浪扬.非线性“Good”Boussinesq方程的显式多辛格式[J].华侨大学学报(自然科学版),2011,32(1):100.[doi:10.11830/ISSN.1000-5013.2011.01.0100]
 HUANG Lang-yang.Explicit Multi-Symplectic Scheme for Nonlinear "Good" Boussinesq Equation[J].Journal of Huaqiao University(Natural Science),2011,32(3):100.[doi:10.11830/ISSN.1000-5013.2011.01.0100]
[2]王志焕,黄浪扬.组合KdV-mKdV方程的多辛Fourier拟谱格式[J].华侨大学学报(自然科学版),2011,32(4):471.[doi:10.11830/ISSN.1000-5013.2011.04.0471]
 WANG Zhi-huan,HUANG Lang-yang.Multi-Symplectic Fourier Pseudo-Spectral Scheme for the Combined KdV-mKdV Equation[J].Journal of Huaqiao University(Natural Science),2011,32(3):471.[doi:10.11830/ISSN.1000-5013.2011.04.0471]

备注/Memo

备注/Memo:
福建省自然科学基金计划资助项目(Z0511029)
更新日期/Last Update: 2014-03-23