参考文献/References:
[1] HENKIN G M. Integral representations of holomorphic functions in strictly pseudoconvex domains and applications [J]. Mat Sb(Ns), 1969.611-632.
[2] HENKIN G M. Integral representations of functions in strictly pseudoconvex domains and applications to the -problem [J]. Mat Sb(Ns), 1970.300-308.
[3] GRAUERT H, LIEB L. Das Ramirezsche integral und die Lsung der gleichung f =α im bereich der beschrnkten formen [J]. Proc Conf Complex Analysis, 1970.29-50.
[4] KOPPELMAN W. The Cauchy integral for differential forms [J]. Bulletin of The American Astronomical Society, 1967.554-556.
[5] HENKIN G M, LEITERER J. Theory of function on complex manifolds [M]. Basel:Birkhouser-Verlag, 1984.
[6] RANGE R M. Holomorphic functions and integral representations in several complex variables [M]. New York:springer-verlag, 1986.
[7] 钟同德, 黄沙. 多元复分析 [M]. 石家庄:河北教育出版社, 1990.
[8] RANGE R M, SIU Y T. Uniform Estimates for the -equation on domains with piecewise smooth strictly pseudoconvex boundaries [J]. Mathematische Annalen, 1973, (206):325-354.
[9] 姜永. Cn空间中具有逐块光滑边界的有界域上K-L-N公式的拓广式 [J]. 厦门大学学报(自然科学版), 2007(6):746-749.doi:10.3321/j.issn:0438-0479.2007.06.002.
[10] LAURENT-THIEBAUT C, LEITERER J. Uniform estimates for the Cauchy-Riemann equation on q-convex wedges [J]. Annales de L’Institut Fourier(Grenoble), 1993(2):383-436.
[11] 陈吕萍. Cn中具有逐块光滑边界的有界域上带权因子积分表示的拓广式 [J]. 数学学报, 2006(5):1113-1120.
[12] 邱春晖, 林良裕. Stein流形上具有非光滑边界的带权因子的Koppelman-Leray公式 [J]. 厦门大学学报(自然科学版), 1999(1):11-16.doi:10.3321/j.issn:0438-0479.1999.01.003.