[1]李志伟,陈特清.C~n空间中具有非光滑边界强拟凸域上Koppelman-Leray-Norguet公式的拓广式[J].华侨大学学报(自然科学版),2008,29(3):459-463.[doi:10.11830/ISSN.1000-5013.2008.03.0459]
 LI Zhi-wei,CHEN Te-qing.Extension Formula of Koppelman-Leray-Norguet Formula on a Strictly Pseudoconvex Domain with Non-Smooth Boundary in Cn Space[J].Journal of Huaqiao University(Natural Science),2008,29(3):459-463.[doi:10.11830/ISSN.1000-5013.2008.03.0459]
点击复制

C~n空间中具有非光滑边界强拟凸域上Koppelman-Leray-Norguet公式的拓广式()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第29卷
期数:
2008年第3期
页码:
459-463
栏目:
出版日期:
2008-07-20

文章信息/Info

Title:
Extension Formula of Koppelman-Leray-Norguet Formula on a Strictly Pseudoconvex Domain with Non-Smooth Boundary in Cn Space
文章编号:
1000-5013(2008)03-0459-05
作者:
李志伟陈特清
泉州师范学院数学系; 厦门大学数学科学学院 福建泉州362000; 福建厦门361005
Author(s):
LI Zhi-wei1 CHEN Te-qing2
1.Department of Mathematics, Quanzhou Normal University, Quanzhou 362000, China; 2.School of Mathematical Science, Xiamen University, Xiamen 361005, China
关键词:
强拟凸域 非光滑边界 Koppelman-Leray-Norguet公式 拓广式 -方程
Keywords:
strictly pseudoconvex domain non-smooth boundary Koppelman-Leray-Norguet formula extension formula -equation
分类号:
O174.5
DOI:
10.11830/ISSN.1000-5013.2008.03.0459
文献标志码:
A
摘要:
利用Laurent-Thiebaut等引进的ΓK流形,构造拓广的B-M(Bochner-Matinelli)新核,探究Cn空间中具有非光滑边界强拟凸域上Koppelman-Leray-Norguet公式的拓广式和-方程的连续解.其结果的特点是不含边界积分,从而避免了边界积分的复杂估计.
Abstract:
By meams of ΓK manifolds introduced by Laurent-Thiebaut,et al,we constructed extend B-M(Bochner-Matinelli) kernel to study extension formula of Koppelman-Leray-Norguet formula and obtained a continuous solutions of -equation on a strictly pseudoconvex domain with non-smooth boundary in Cn space.Our method does not involve integral on boundary that can avoid the complexity estimations of the boundary integrals.

参考文献/References:

[1] HENKIN G M. Integral representations of holomorphic functions in strictly pseudoconvex domains and applications [J]. Mat Sb(Ns), 1969.611-632.
[2] HENKIN G M. Integral representations of functions in strictly pseudoconvex domains and applications to the -problem [J]. Mat Sb(Ns), 1970.300-308.
[3] GRAUERT H, LIEB L. Das Ramirezsche integral und die Lsung der gleichung f =α im bereich der beschrnkten formen [J]. Proc Conf Complex Analysis, 1970.29-50.
[4] KOPPELMAN W. The Cauchy integral for differential forms [J]. Bulletin of The American Astronomical Society, 1967.554-556.
[5] HENKIN G M, LEITERER J. Theory of function on complex manifolds [M]. Basel:Birkhouser-Verlag, 1984.
[6] RANGE R M. Holomorphic functions and integral representations in several complex variables [M]. New York:springer-verlag, 1986.
[7] 钟同德, 黄沙. 多元复分析 [M]. 石家庄:河北教育出版社, 1990.
[8] RANGE R M, SIU Y T. Uniform Estimates for the -equation on domains with piecewise smooth strictly pseudoconvex boundaries [J]. Mathematische Annalen, 1973, (206):325-354.
[9] 姜永. Cn空间中具有逐块光滑边界的有界域上K-L-N公式的拓广式 [J]. 厦门大学学报(自然科学版), 2007(6):746-749.doi:10.3321/j.issn:0438-0479.2007.06.002.
[10] LAURENT-THIEBAUT C, LEITERER J. Uniform estimates for the Cauchy-Riemann equation on q-convex wedges [J]. Annales de L’Institut Fourier(Grenoble), 1993(2):383-436.
[11] 陈吕萍. Cn中具有逐块光滑边界的有界域上带权因子积分表示的拓广式 [J]. 数学学报, 2006(5):1113-1120.
[12] 邱春晖, 林良裕. Stein流形上具有非光滑边界的带权因子的Koppelman-Leray公式 [J]. 厦门大学学报(自然科学版), 1999(1):11-16.doi:10.3321/j.issn:0438-0479.1999.01.003.

备注/Memo

备注/Memo:
国家自然科学基金资助项目(10771144)
更新日期/Last Update: 2014-03-23