[1]赖雅琳,吴明忠.粘弹性材料减振垫的设计方法分析[J].华侨大学学报(自然科学版),2008,29(2):319-320.[doi:10.11830/ISSN.1000-5013.2008.02.0319]
 LAI Ya-lin,WU Ming-zhong.On the Design and Calculation of Vibration-Reducing Pad Made of Viscous-Elastic Materials[J].Journal of Huaqiao University(Natural Science),2008,29(2):319-320.[doi:10.11830/ISSN.1000-5013.2008.02.0319]
点击复制

粘弹性材料减振垫的设计方法分析()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第29卷
期数:
2008年第2期
页码:
319-320
栏目:
出版日期:
2008-04-20

文章信息/Info

Title:
On the Design and Calculation of Vibration-Reducing Pad Made of Viscous-Elastic Materials
文章编号:
1000-5013(2008)02-0319-02
作者:
赖雅琳吴明忠
华侨大学机电及自动化学院; 华侨大学机电及自动化学院 福建泉州362021; 福建泉州362021
Author(s):
LAI Ya-lin WU Ming-zhong
College of Mechanical Engineering and Automation, Huaqiao University, Quanzhou 362021, China
关键词:
粘弹性材料 减振垫 动力平衡 经验公式 有限元方法
Keywords:
viscous-elastic materials vibration-reducing pad dynamic equilibrium experienced formula finite element method
分类号:
TB535.1
DOI:
10.11830/ISSN.1000-5013.2008.02.0319
文献标志码:
A
摘要:
分析设计粘弹性材料减振垫时常采用的动力平衡方程计算法、经验公式计算法,以及试验测试法的不同.结果表明,3种方法的Kd-ω曲线比较接近,均适合粘弹性材料减振垫的设计计算,但动力平衡方程更接近于试验测试的情况,对于要求较高的关键部位的减振垫设计也更为合适.在实际应用中,可以根据具体要求来选取有限元计算的精确度,以使误差在所要求的范围之内.
Abstract:
The comparison of the method based on dynamic equilibrium,the method based on experienced formula and the experimental testing method is given,which are related with the viscous-elastic theory and commonly used in analysis and design of vibration-reducing pad made of viscous-elastic materials.The result of the comparison shows that the relation between Kd-ω using the 3 methods is very close.However,the result of the method based on dynamic equilibrium is nearer to that of the experimental testing method,more suitable for designing vibration-reducing pad,the key part of which has a higher requirement in technique.In the practical applications,the precision of the finite element model for the dynamic equilibrium can be chosen according to the technical requirements until the error is limited to the desired value.

参考文献/References:

[1] 徐芝纶. 弹性力学 [M]. 北京:高等教育出版社, 1990.
[2] 李开泰. 有限元法及其应用 [M]. 西安:西安交通大学出版社, 1984.
[3] 吴鸿庆, 任侠. 结构有限元分析 [M]. 北京:中国铁道出版社, 2000.
[4] 刘延柱, 陈文良, 陈立群. 振动力学 [M]. 北京:高等教育出版社, 1998.
[5] KUO B C. Digital control systems [M]. Fort Worth:Saunders College Publishing, 1992.

更新日期/Last Update: 2014-03-23