[1]许绍元.Banach空间中局部强伪压缩映射的新不动点定理[J].华侨大学学报(自然科学版),2007,28(3):323-326.[doi:10.3969/j.issn.1000-5013.2007.03.026]
 XU Shao-yuan.New Fixed Point Theorems for Local Strong Pseudo-Contraction in Banach Spaces[J].Journal of Huaqiao University(Natural Science),2007,28(3):323-326.[doi:10.3969/j.issn.1000-5013.2007.03.026]
点击复制

Banach空间中局部强伪压缩映射的新不动点定理()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第28卷
期数:
2007年第3期
页码:
323-326
栏目:
出版日期:
2007-07-20

文章信息/Info

Title:
New Fixed Point Theorems for Local Strong Pseudo-Contraction in Banach Spaces
文章编号:
1000-5013(2007)03-0323-04
作者:
许绍元
赣南师范学院数学与计算机学院 江西赣州341000
Author(s):
XU Shao-yuan
School of Mathematics and Computer Science, Gannan Normal University, Ganzhou 341000, China
关键词:
局部强伪压缩映射 不动点 Banach空间 Altman定理 Roth定理 Petryshyn定理
Keywords:
local strong pseudo-contraction fixed point Banach space Altman′s theorem Roth′s theorem Petryshyh′ theorem
分类号:
O177.91
DOI:
10.3969/j.issn.1000-5013.2007.03.026
文献标志码:
A
摘要:
利用Banach空间中局部强伪压缩映射的一个基本不动点定理,在适当的边界条件下,得到了Banach空间中局部强伪压缩映射的新不动点定理.特别地,得到Banach空间中局部强伪压缩映射的Altman定理、Roth定理和Petryshyn定理,以及定理的各种推广形式.
Abstract:
In this paper,based on a basic result on local strong pseudo-contraction,some new fixed point theorems for local strong pseudo-contraction are obtained.As a result,the famous Altman′s theorem,Roth′s theorem and Petryshyn theorem for such class of mappings are obtained and generalized.

参考文献/References:

[1] MORALES C H. On the fixed-point theory for locally k-pseudocontractions [J]. Proceedings of the American Mathematical Society, 1981(1):71-74.
[2] MORALES C H, MUTANGADURA S A. On the approximation of fixed points for locally pseudocontractive mappings [J]. Proceedings of the American Mathematical Society, 1995(2):417-423.
[3] MORALES C H. Strong convergence theorems for locally pseudo-contractive mappings in Banach spaces [J]. Houston Journal of Mathematics, 1990(2):549-557.
[4] MORALES C H, MUTANGADURA S A. On a fixed point theorem of Kirk [J]. Proceedings of the American Mathematical Society, 1995, (11):3397-3401.
[5] KIRK W A. A fixed point theorem for local pseudo-contractions in uniformly convex spaces [J]. Manuscripta Mathematica, 1979(1):89-102.
[6] KIRK W A, MORALES C H. Fixed point theorem for local strong pseudo-contractions [J]. Nonlinear Analysis-Theory Methods & Applications, 1980(2):363-368.
[7] MARTIN R H. Differential equations on closed subsets of a Banach spaces [J]. Transactions of the American Mathematical Socity, 1973(2):399-414.
[8] GUO Da-jun. Existence and uniqueness of positive fixed points for mixed monotone operators and applications [J]. Applicable Analysis, 1992(1):91-100.

备注/Memo

备注/Memo:
江西省自然科学基金资助项目(0611005); 江西省教育厅科技计划项目([2006]239)
更新日期/Last Update: 2014-03-23