[1]张义平.制造系统负荷配置的非线性优化[J].华侨大学学报(自然科学版),2006,27(4):412-414.[doi:10.3969/j.issn.1000-5013.2006.04.021]
 Zhang Yiping.Non-Linear Optimization of Load Allocation in a Manufacturing System[J].Journal of Huaqiao University(Natural Science),2006,27(4):412-414.[doi:10.3969/j.issn.1000-5013.2006.04.021]
点击复制

制造系统负荷配置的非线性优化()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第27卷
期数:
2006年第4期
页码:
412-414
栏目:
出版日期:
2006-10-20

文章信息/Info

Title:
Non-Linear Optimization of Load Allocation in a Manufacturing System
文章编号:
1000-5013(2006)04-0412-03
作者:
张义平
苏州市职业大学机电工程系 江苏苏州210016
Author(s):
Zhang Yiping
Department of Mechanical and Electrical Engineering, Suzhou Vocational Unviersity, 210016, Suzhou, China
关键词:
负荷配置 排队理论 凸优化 制造系统 非线性优化模型
Keywords:
load allocation queuing theory convex optimization manufacturing systems non-linear optimization model
分类号:
TH16
DOI:
10.3969/j.issn.1000-5013.2006.04.021
文献标志码:
A
摘要:
基于排队理论,建立制造系统负荷分配的非线性优化模型.该模型以服务负荷为目标函数,包括关于在制品状态的3个不等式约束.设计一种优化变量转换方法,并经适当的约束条件合并,将该非线性模型转换为凸优化模型.推导给出该凸优化模型对应的拉格朗日函数及KKT条件,并引入凸优化内点法作为负荷分配的有效计算工具.实例计算结果表明,模型的优化结果能保证充分利用设备的生产能力及最低的在制品库存,同时凸优化内点算法具有迭代次数少、收敛速度快的优点.实际应用中,可以将非线性的复杂的优化问题凸性化,从而得到其最优解.
Abstract:
Based on the queuing theory,a nonlinear optimization model is proposed,which has the service load as its objective function and includes three inequality constraints of work-in-progres(WIP).A novel transformation of optimization variables is also devised and the constraints are properly combined so as to make this model into a convex one,from which the Lagrangian function and the Karush-Kuhn-Tucker(KKT) conditions are derived.The interior-point method for convex optimization is presented here as a computationally efficient tool.Finally,this model is evaluated on a real example,from which such conclusions are reached that the optimum result can ensure the full utilization of machines and the least amount of WIP in manufacturing systems; the interior-point method needs fewer iterations with significant computational savings; and it is possible to make nonlinear and complicated optimization problems convexified so as to obtain the optimum.

参考文献/References:

[1] 史海波, 张丽娟, 薛劲松. 柔性制造系统的负荷分配及路径规划方法 [J]. 控制理论与应用, 1994(4):477-482.
[2] 张志英. FMS中加工设备负荷分配算法研究 [J]. 北京理工大学学报, 2002(4):151-155.doi:10.3969/j.issn.1001-0645.2002.02.005.
[3] Visncmadham N, Narahari Y. Penformance modeling of automated manufacturing systems [M]. Cambridge:Yrentice-Hall, 1992.315-340.
[4] Scholkopf B, Smola A. Learning with kernels [M]. Cambridge:MIT Press, 2002.149-186.
[5] Vanderbei R J, Shanno D F. Interior-point methods for noncenvex nonlinear programming:Orderings and higher-order methods [J]. Mathematical Programming, 2000, (2):303-316.doi:10.1007/s101070050116.
[6] Vial J P. Computational experience with a primal-dual IPM for smooth convex programming [J]. Optimization Methods and Software, 1994.285-316.

备注/Memo

备注/Memo:
江苏省教育厅自然科学基金资助项目(05KID460198)
更新日期/Last Update: 2014-03-23