[1]黄浪扬.非线性Pochhammer-Chree方程的多辛算法[J].华侨大学学报(自然科学版),2006,27(3):241-243.[doi:10.3969/j.issn.1000-5013.2006.03.005]
 Huang Langyang.Multi-Symplectic Algorithm for Nonlinear Pochhammer-Chree Equation[J].Journal of Huaqiao University(Natural Science),2006,27(3):241-243.[doi:10.3969/j.issn.1000-5013.2006.03.005]
点击复制

非线性Pochhammer-Chree方程的多辛算法()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第27卷
期数:
2006年第3期
页码:
241-243
栏目:
出版日期:
2006-07-20

文章信息/Info

Title:
Multi-Symplectic Algorithm for Nonlinear Pochhammer-Chree Equation
文章编号:
1000-5013(2006)03-0241-03
作者:
黄浪扬
华侨大学数学系 福建泉州362021
Author(s):
Huang Langyang
Department of Mathematics, Huaqiao University, 362021, Quanzhou, China
关键词:
非线性Pochhammer-Chree方程 多辛算法 守恒律 孤立波试验
Keywords:
nonlinear Pochhammer-Chree equation multi-symplectic algorithm conservation law solitary wave experiment
分类号:
O241.82
DOI:
10.3969/j.issn.1000-5013.2006.03.005
文献标志码:
A
摘要:
考虑非线性Pochhammer-Chree方程的多辛结构,通过辛离散多辛结构得到原偏微分方程的多辛算法.孤立波的数值模拟试验结果表明,所构造的多辛算法是有效的,具有良好的长时间数值行为.
Abstract:
The multi-symplectic structure of the nonlinear Pochhammer-Chree equation is considered.Using symplectic discretizations for the multi-symplectic structure,a multi-symplectic algorithm is obtained.The numerical experiments show that the multi-symplectic scheme constructed in this paper is effective, and has excellent long-time numerical behavior.

参考文献/References:

[1] Marsden J E, Patrick G P, Shkoller S. Multisymplectic geometry, variational integrators and nonlinear PDEs [J]. Communications in Mathematical Physics, 1998.351-395.
[2] Bridges T J. Multi-symplectic structures and wave propagation [J]. Mathematical Proceedings of the Cambridge Philosophical Society, 1997.147-190.doi:10.1017/S0305004196001429.
[3] Bridges T J, Reich S. Multi-symplectic integrators:Numerical Schemes for Hamiltonian PDEs that conserve symplecticity [J]. Physics Letters A, 2001, (4-5):184-193.doi:10.1016/S0375-9601(01)00294-8.
[4] Reich S. Multi-symplectic Runge-Kutta methods for Hamiltonian wave equations [J]. Journal of Computational Physics, 2000(5):473-499.
[5] 刘广军, 段广森. 非线性弹性杆内纵向波方程的孤立波解 [J]. 河南师范大学学报(自然科学版), 2001(3):101-103.doi:10.3969/j.issn.1000-2367.2001.03.025.

备注/Memo

备注/Memo:
福建省自然科学基金资助项目(Z0511029)
更新日期/Last Update: 2014-03-23