[1]吴钦宽.一类奇摄动非线性边值问题激波解的间接匹配[J].华侨大学学报(自然科学版),2006,27(2):123-125.[doi:10.3969/j.issn.1000-5013.2006.02.003]
 Wu Qinkuan.The Indirect Matching of Shock Solution for A Class of Singularly Perturbed Nonlinear Boundary Value Problems[J].Journal of Huaqiao University(Natural Science),2006,27(2):123-125.[doi:10.3969/j.issn.1000-5013.2006.02.003]
点击复制

一类奇摄动非线性边值问题激波解的间接匹配()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第27卷
期数:
2006年第2期
页码:
123-125
栏目:
出版日期:
2006-04-20

文章信息/Info

Title:
The Indirect Matching of Shock Solution for A Class of Singularly Perturbed Nonlinear Boundary Value Problems
文章编号:
1000-5013(2006)02-0123-03
作者:
吴钦宽
南京工程学院基础部 江苏 南京 210013
Author(s):
Wu Qinkuan
Department of Basic Courses, Nanjing Institute of Technology , 210013, Nanjing, China
关键词:
奇摄动 非线性方程 激波 间接匹配
Keywords:
singular perturbation nonlinear equation shock indirect matching
分类号:
O175.14
DOI:
10.3969/j.issn.1000-5013.2006.02.003
文献标志码:
A
摘要:
讨论一类非线性奇摄动方程的激波问题.利用间接匹配法,首先构造出外部解,然后引入升长变量,最后构造出激波在区间内的激波解.
Abstract:
In this paper, the shock problems for class of nonlinear singularly perturbed equations is considered. Using indirect matching method, we construct outer solutions, then introduce stretch variable, and at last the shock solutions in interval.

参考文献/References:

[1] de Jager E M, Jiang Furu. The theory of singular perturbation [M]. Amsterdam:North-Holland Publishing Co, 1996.1-7.
[2] Glizer V Y, Fridman E. A control singularly perturbed system with small state delay [J]. Journal of Mathematical Analysis and Applications, 2000(1):49-85.
[3] Kadalbajoo M K, Patdar K C. Singularly perturbed problems in partial differential equations:A survey [J]. Applied Mathematics and Computation, 2003, (2-3):371-429.doi:10.1016/S0096-3003(01)00291-0.
[4] Hamouda M. Interior layer for second-order singular equations [J]. Applicable Analysis, 2002(3):837-866.doi:10.1080/0003681021000004465.
[5] O’Malley R E Jr. On the asymptotic solution of the singularly perturbed boundary value problems posed by Bohé [J]. Journal of Mathematical Analysis and Applications, 2000(1):18-38.doi:10.1006/jmaa.1999.6641.
[6] Kelley W G. A singular perturbation problem of Carrier and Pearson [J]. Journal of Mathematical Analysis and Applications, 2001.678-697.
[7] 莫嘉琪. 一类非线性方程的激波解 [J]. 数学物理学报, 2003(5):530-534.doi:10.3321/j.issn:1003-3998.2003.02.015.
[8] 吴钦宽. 一类敏感边值问题激波位置的变化 [J]. 工程数学学报, 2004(4):653-656.doi:10.3969/j.issn.1005-3085.2004.04.032.
[9] 吴钦宽. 一类激波问题的间接匹配解 [J]. 物理学报, 2005(6):2510-2513.doi:10.3321/j.issn:1000-3290.2005.06.010.
[10] Karwowski A J. Remark on indirect matching of singularly perturbed boundaryvalue problems [J]. Quarterly of Applied Mathematics, 2003(3):401-433.
[11] Nayfeh A H. Introduction to perturbation techniques [M]. New York:John Wiley and Sons Press, 1981.14-15.
[12] Kevorkian J, Cole J D. Multiple scales and singular perturbation methods [M]. New York:Springer-Verlag, 1996.82-94.

备注/Memo

备注/Memo:
国家自然科学基金资助项目(10471039)
更新日期/Last Update: 2014-03-23