[1]单双荣.解高阶抛物型方程的三层显式差分格式[J].华侨大学学报(自然科学版),2005,26(3):239-242.[doi:10.3969/j.issn.1000-5013.2005.03.004]
 Shan Shuangrong.A Three-Layer Explicit Difference Scheme for Solving the Parabolic Equation of Higher Order[J].Journal of Huaqiao University(Natural Science),2005,26(3):239-242.[doi:10.3969/j.issn.1000-5013.2005.03.004]
点击复制

解高阶抛物型方程的三层显式差分格式()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第26卷
期数:
2005年第3期
页码:
239-242
栏目:
出版日期:
2005-07-20

文章信息/Info

Title:
A Three-Layer Explicit Difference Scheme for Solving the Parabolic Equation of Higher Order
文章编号:
1000-5013(2005)03-0239-04
作者:
单双荣
华侨大学数学系 福建泉州362021
Author(s):
Shan Shuangrong
Department of Mathematics, Huaqiao University, 362021, Quanzhou, China
关键词:
高阶抛物型方程 高精度 显式差分格式
Keywords:
parabolic equation of higher order high accuracy explicit difference scheme
分类号:
O241.82
DOI:
10.3969/j.issn.1000-5013.2005.03.004
文献标志码:
A
摘要:
对高阶抛物型方程提出一个三层显式差分格式,其局部截断误差阶是O(τ2+h4).证明当m为1,2,3时,其稳定性条件为r=τ/h2m<1/22m-1.数值例子表明所提的格式是有效的,理论分析是正确的.
Abstract:
A three-layer explicit difference scheme is proposed for solving the parabolic equation of higher order [SX(] u[] t[SX)]=(-1) m+1 [SX(] 2m u[] t 2m [SX)] (where m is a positive integer). The local truncation error of the propesed scheme is in the order of O(τ 2+h 4) . Its stability condition is proved to be r=τ/h 2m <1/2 2m-1 when m =1,2,3. The proposed scheme is effective and relevant theoretical analysis is correct, as shown by numerical examples.

参考文献/References:

[1] Саулъев K, 袁兆鼎. 抛物型方程的网格积分法 [M]. 北京:科学出版社, 1963.143-152.
[2] 曾文平. 高阶抛物型方程的一族高精度恒稳差分格式 [J]. 计算数学, 2003(3):347-354.doi:10.3321/j.issn:0254-7791.2003.03.009.
[3] Richtmyer R D, Morton K W. Difference method for initial-valne problems [M]. New York:wiley, 1967.38-82.
[4] 金承日. 解抛物型方程的高精度显式差分格式 [J]. 计算数学, 1991(1):38-44.
[5] 曾文平. 解四阶抛物型方程的高精度显式差分格式 [J]. 华侨大学学报(自然科学版), 1997(2):120-127.
[6] 马驷良. 二阶矩阵族一致有界的充要条件及其对差分方程稳定性的应用 [J]. 高等学校计算数学学报, 1980(2):28-45.

相似文献/References:

[1]夏正权,沈子镛.高精度和大直径内螺纹挤压攻丝的机理与实践[J].华侨大学学报(自然科学版),1987,8(4):430.[doi:10.11830/ISSN.1000-5013.1987.04.0430]
 Xia Zhengquan,Shen Jiyong.A High Precision and Large Diameter Internal Threading by Extrusion[J].Journal of Huaqiao University(Natural Science),1987,8(3):430.[doi:10.11830/ISSN.1000-5013.1987.04.0430]
[2]张宗欣.高精度位置传感器及其在液压轧机上的应用[J].华侨大学学报(自然科学版),1988,9(4):539.[doi:10.11830/ISSN.1000-5013.1988.04.0539]
 Zhang Zongxin.A High Accuracy Position Sensor and Its Application to Hydraulic Mill[J].Journal of Huaqiao University(Natural Science),1988,9(3):539.[doi:10.11830/ISSN.1000-5013.1988.04.0539]
[3]曾文平.两类含参数高精度恒稳的半显式差分格式[J].华侨大学学报(自然科学版),1993,14(2):133.[doi:10.11830/ISSN.1000-5013.1993.02.0133]
 Zeng Wenping.Two Classes of Absolutely Stable and High Accuracy Difference Schemes Depending on a Parameter[J].Journal of Huaqiao University(Natural Science),1993,14(3):133.[doi:10.11830/ISSN.1000-5013.1993.02.0133]
[4]曾文平.解三维抛物型方程的高精度显式格式[J].华侨大学学报(自然科学版),1995,16(2):128.[doi:10.11830/ISSN.1000-5013.1995.02.0128]
 Zeng Wenping.High Accuracy Explicit Difference Schemes for Solving Three-Dimensional Equation of the Parabola[J].Journal of Huaqiao University(Natural Science),1995,16(3):128.[doi:10.11830/ISSN.1000-5013.1995.02.0128]
[5]曾文平.解四阶抛物型方程高精度恒稳的隐式格式[J].华侨大学学报(自然科学版),1996,17(4):331.[doi:10.11830/ISSN.1000-5013.1996.04.0331]
 Zeng Wenping.A Class of High Accurate and Absolutely Stable Implicit Difference Schemes for Solving Four Order Parabolic Equations[J].Journal of Huaqiao University(Natural Science),1996,17(3):331.[doi:10.11830/ISSN.1000-5013.1996.04.0331]
[6]曾文平.解四阶抛物型方程的高精度显式差分格式[J].华侨大学学报(自然科学版),1997,18(2):122.[doi:10.11830/ISSN.1000-5013.1997.02.0122]
 Zeng Wenping.Explicit Difference Scheme of High Accuracy for Solving Four Order Parabolic Equation[J].Journal of Huaqiao University(Natural Science),1997,18(3):122.[doi:10.11830/ISSN.1000-5013.1997.02.0122]
[7]曾文平.高阶抛物型方程恒稳的显式差分格式[J].华侨大学学报(自然科学版),1998,19(2):124.[doi:10.11830/ISSN.1000-5013.1998.02.0124]
 Zeng Wenping.Absolutely Stable Explicit Difference Scheme for Sloving Parabolic Equation of Higher Order[J].Journal of Huaqiao University(Natural Science),1998,19(3):124.[doi:10.11830/ISSN.1000-5013.1998.02.0124]
[8]曾文平.解二维抛物型方程的恒稳高精度格式[J].华侨大学学报(自然科学版),1999,20(1):18.[doi:10.11830/ISSN.1000-5013.1999.01.0018]
 Zeng Wenping.A Family of Steady and High Accurate Difference Schemes for Solving Two Dimensional Equations of Parabolic Type[J].Journal of Huaqiao University(Natural Science),1999,20(3):18.[doi:10.11830/ISSN.1000-5013.1999.01.0018]
[9]黄浪扬,曾文平.抛物型方程的一族高精度恒稳格式[J].华侨大学学报(自然科学版),2000,21(2):124.[doi:10.3969/j.issn.1000-5013.2000.02.004]
 Huang langyang,Zeng Wenping.A Group of Steady Difference Schemes wth High Accuracy for Solving Parabolic Equation[J].Journal of Huaqiao University(Natural Science),2000,21(3):124.[doi:10.3969/j.issn.1000-5013.2000.02.004]
[10]曾文平.抛物型方程的一族双参数高精度恒稳格式[J].华侨大学学报(自然科学版),2002,23(4):327.[doi:10.3969/j.issn.1000-5013.2002.04.001]

备注/Memo

备注/Memo:
国务院侨务办公室科研基金资助项目(04QZR09)
更新日期/Last Update: 2014-03-23