参考文献/References:
[1] Саулъев K, 袁兆鼎. 抛物型方程的网格积分法 [M]. 北京:科学出版社, 1963.143-152.
[2] 曾文平. 高阶抛物型方程的一族高精度恒稳差分格式 [J]. 计算数学, 2003(3):347-354.doi:10.3321/j.issn:0254-7791.2003.03.009.
[3] Richtmyer R D, Morton K W. Difference method for initial-valne problems [M]. New York:wiley, 1967.38-82.
[4] 金承日. 解抛物型方程的高精度显式差分格式 [J]. 计算数学, 1991(1):38-44.
[5] 曾文平. 解四阶抛物型方程的高精度显式差分格式 [J]. 华侨大学学报(自然科学版), 1997(2):120-127.
[6] 马驷良. 二阶矩阵族一致有界的充要条件及其对差分方程稳定性的应用 [J]. 高等学校计算数学学报, 1980(2):28-45.
相似文献/References:
[1]夏正权,沈子镛.高精度和大直径内螺纹挤压攻丝的机理与实践[J].华侨大学学报(自然科学版),1987,8(4):430.[doi:10.11830/ISSN.1000-5013.1987.04.0430]
Xia Zhengquan,Shen Jiyong.A High Precision and Large Diameter Internal Threading by Extrusion[J].Journal of Huaqiao University(Natural Science),1987,8(3):430.[doi:10.11830/ISSN.1000-5013.1987.04.0430]
[2]张宗欣.高精度位置传感器及其在液压轧机上的应用[J].华侨大学学报(自然科学版),1988,9(4):539.[doi:10.11830/ISSN.1000-5013.1988.04.0539]
Zhang Zongxin.A High Accuracy Position Sensor and Its Application to Hydraulic Mill[J].Journal of Huaqiao University(Natural Science),1988,9(3):539.[doi:10.11830/ISSN.1000-5013.1988.04.0539]
[3]曾文平.两类含参数高精度恒稳的半显式差分格式[J].华侨大学学报(自然科学版),1993,14(2):133.[doi:10.11830/ISSN.1000-5013.1993.02.0133]
Zeng Wenping.Two Classes of Absolutely Stable and High Accuracy Difference Schemes Depending on a Parameter[J].Journal of Huaqiao University(Natural Science),1993,14(3):133.[doi:10.11830/ISSN.1000-5013.1993.02.0133]
[4]曾文平.解三维抛物型方程的高精度显式格式[J].华侨大学学报(自然科学版),1995,16(2):128.[doi:10.11830/ISSN.1000-5013.1995.02.0128]
Zeng Wenping.High Accuracy Explicit Difference Schemes for Solving Three-Dimensional Equation of the Parabola[J].Journal of Huaqiao University(Natural Science),1995,16(3):128.[doi:10.11830/ISSN.1000-5013.1995.02.0128]
[5]曾文平.解四阶抛物型方程高精度恒稳的隐式格式[J].华侨大学学报(自然科学版),1996,17(4):331.[doi:10.11830/ISSN.1000-5013.1996.04.0331]
Zeng Wenping.A Class of High Accurate and Absolutely Stable Implicit Difference Schemes for Solving Four Order Parabolic Equations[J].Journal of Huaqiao University(Natural Science),1996,17(3):331.[doi:10.11830/ISSN.1000-5013.1996.04.0331]
[6]曾文平.解四阶抛物型方程的高精度显式差分格式[J].华侨大学学报(自然科学版),1997,18(2):122.[doi:10.11830/ISSN.1000-5013.1997.02.0122]
Zeng Wenping.Explicit Difference Scheme of High Accuracy for Solving Four Order Parabolic Equation[J].Journal of Huaqiao University(Natural Science),1997,18(3):122.[doi:10.11830/ISSN.1000-5013.1997.02.0122]
[7]曾文平.高阶抛物型方程恒稳的显式差分格式[J].华侨大学学报(自然科学版),1998,19(2):124.[doi:10.11830/ISSN.1000-5013.1998.02.0124]
Zeng Wenping.Absolutely Stable Explicit Difference Scheme for Sloving Parabolic Equation of Higher Order[J].Journal of Huaqiao University(Natural Science),1998,19(3):124.[doi:10.11830/ISSN.1000-5013.1998.02.0124]
[8]曾文平.解二维抛物型方程的恒稳高精度格式[J].华侨大学学报(自然科学版),1999,20(1):18.[doi:10.11830/ISSN.1000-5013.1999.01.0018]
Zeng Wenping.A Family of Steady and High Accurate Difference Schemes for Solving Two Dimensional Equations of Parabolic Type[J].Journal of Huaqiao University(Natural Science),1999,20(3):18.[doi:10.11830/ISSN.1000-5013.1999.01.0018]
[9]黄浪扬,曾文平.抛物型方程的一族高精度恒稳格式[J].华侨大学学报(自然科学版),2000,21(2):124.[doi:10.3969/j.issn.1000-5013.2000.02.004]
Huang langyang,Zeng Wenping.A Group of Steady Difference Schemes wth High Accuracy for Solving Parabolic Equation[J].Journal of Huaqiao University(Natural Science),2000,21(3):124.[doi:10.3969/j.issn.1000-5013.2000.02.004]
[10]曾文平.抛物型方程的一族双参数高精度恒稳格式[J].华侨大学学报(自然科学版),2002,23(4):327.[doi:10.3969/j.issn.1000-5013.2002.04.001]