[1]曾文平.解高阶抛物型方程的一族隐式差分格式[J].华侨大学学报(自然科学版),2005,26(3):235-238.[doi:10.3969/j.issn.1000-5013.2005.03.003]
 Zeng Wenping.A Family of Implicit Difference Schemes for Solving the Parabolic Equation of Higher Order[J].Journal of Huaqiao University(Natural Science),2005,26(3):235-238.[doi:10.3969/j.issn.1000-5013.2005.03.003]
点击复制

解高阶抛物型方程的一族隐式差分格式()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第26卷
期数:
2005年第3期
页码:
235-238
栏目:
出版日期:
2005-07-20

文章信息/Info

Title:
A Family of Implicit Difference Schemes for Solving the Parabolic Equation of Higher Order
文章编号:
1000-5013(2005)03-0235-04
作者:
曾文平
华侨大学数学系 福建泉州362021
Author(s):
Zeng Wenping
Department of Mathematics, Huaqiao University, 362021, Quanzhou, China
关键词:
高阶抛物型方程 隐式差分格式 稳定性
Keywords:
parabolic equation of higher order implicit difference scheme stability
分类号:
O241.82
DOI:
10.3969/j.issn.1000-5013.2005.03.003
文献标志码:
A
摘要:
对高阶抛物型方程t=(-1)m+1x2m(m为正整数),构造一族含双参数的三层隐式差分格式·在特殊情况下,当参数α=21,β=0时得到一个双层格式·这些格式的截断误差阶均为O((Δt)2+(Δx)4).证明当m=1,2,3时,这些格式对任意非负参数α≥0,β≥0都是绝对稳定的·数值例子表明,所得格式是有效的,其理论分析是正确的·
Abstract:
For solving the parabolic equation of higher order [SX(] u[] t[SX)]=(-1) m+1 [SX(] 2m u[] x 2m [SX)] (where m is a positive integer), a family of three-layered implicit difference schemes containing biparameters are constructed. In a special case, a two-layer scheme is obtained when parameter α=[SX(]1[]2[SX)], β=0. The order of the truncation error of all these schemes is O ((Δ t ) 2+(Δ x ) 4). These schemes are proved to be absolutely stable for arbitrarily chosen non-negative parameter α≥0, β ≥0 when m =1,2,3. As shown by numerical examples, these schemes are effective and the theoretical analysis is correct.

参考文献/References:

[1] Саулъев K, 袁兆鼎. 抛物型方程的网格积分法 [M]. 北京:科学出版社, 1963.143-152.
[2] 曾文平. 高阶抛物型方程的具有高稳定性的显式与半显式差分格式 [J]. 应用数学学报, 1996(4):631-634.
[3] 曾文平. 高阶抛物型方程恒稳的显式差分格式 [J]. 华侨大学学报(自然科学版), 1998(2):122-127.
[4] 陈传淡, 林群. 解抛物型方程的一族绝对稳定的差分格式 [J]. 厦门大学学报(自然科学版), 1983(3):275-280.
[5] Richtmyer R D, Morton K W. Difference method for initial-value problems [M]. New York:wiley, 1967.38-167.
[6] 周顺兴. 解抛物型偏微分方程的高精度差分格式 [J]. 计算数学, 1982(2):204-213.
[7] 曾文平. 四阶抛物型方程两类新的恒稳差分格式 [J]. 华侨大学学报(自然科学版), 1997(4):334-340.
[8] MILLER J J H. On the location of zeros of certain classes of polynonials with application to numerical analysis [J]. Journal of the Institute of Mathematics and Its Applications, 1971.394-406.
[9] 矢岛信男, 野术达夫. 发展方程の数值解析 [M]. 东京:岩波书店, 1973.57-78.

相似文献/References:

[1]曾文平.解四阶抛物型方程高精度恒稳的隐式格式[J].华侨大学学报(自然科学版),1996,17(4):331.[doi:10.11830/ISSN.1000-5013.1996.04.0331]
 Zeng Wenping.A Class of High Accurate and Absolutely Stable Implicit Difference Schemes for Solving Four Order Parabolic Equations[J].Journal of Huaqiao University(Natural Science),1996,17(3):331.[doi:10.11830/ISSN.1000-5013.1996.04.0331]
[2]曾文平.四阶抛物型方程两类新的恒稳差分格式[J].华侨大学学报(自然科学版),1997,18(4):334.[doi:10.11830/ISSN.1000-5013.1997.04.0334]
[3]曾文平.高阶抛物型方程恒稳的显式差分格式[J].华侨大学学报(自然科学版),1998,19(2):124.[doi:10.11830/ISSN.1000-5013.1998.02.0124]
 Zeng Wenping.Absolutely Stable Explicit Difference Scheme for Sloving Parabolic Equation of Higher Order[J].Journal of Huaqiao University(Natural Science),1998,19(3):124.[doi:10.11830/ISSN.1000-5013.1998.02.0124]
[4]黄浪扬,曾文平.抛物型方程的一族高精度恒稳格式[J].华侨大学学报(自然科学版),2000,21(2):124.[doi:10.3969/j.issn.1000-5013.2000.02.004]
 Huang langyang,Zeng Wenping.A Group of Steady Difference Schemes wth High Accuracy for Solving Parabolic Equation[J].Journal of Huaqiao University(Natural Science),2000,21(3):124.[doi:10.3969/j.issn.1000-5013.2000.02.004]
[5]曾文平.解四阶杆振动方程新的两类隐式差分格式[J].华侨大学学报(自然科学版),2003,24(2):136.[doi:10.3969/j.issn.1000-5013.2003.02.005]
 Zeng Wenping.Two New Classes of Implicit Difference Schemes for Solving Rod Vibration Equation of Four Order[J].Journal of Huaqiao University(Natural Science),2003,24(3):136.[doi:10.3969/j.issn.1000-5013.2003.02.005]
[6]曾文平.四阶抛物型方程的一族高精度恒稳的差分格式[J].华侨大学学报(自然科学版),2003,24(3):245.[doi:10.3969/j.issn.1000-5013.2003.03.004]
 Zeng Wenping.A Family of Highly Accurate and Absolutely Stable Difference Schemes for Solving Parabolic Equation of Four Order[J].Journal of Huaqiao University(Natural Science),2003,24(3):245.[doi:10.3969/j.issn.1000-5013.2003.03.004]
[7]曾文平.解双抛物型方程的两类恒稳差分格式[J].华侨大学学报(自然科学版),2004,25(1):14.[doi:10.3969/j.issn.1000-5013.2004.01.004]
 Zeng Wenping.Two Classes of Steady Difference Schemes for Solving Biparabolic Equation[J].Journal of Huaqiao University(Natural Science),2004,25(3):14.[doi:10.3969/j.issn.1000-5013.2004.01.004]
[8]单双荣.解高阶抛物型方程的三层显式差分格式[J].华侨大学学报(自然科学版),2005,26(3):239.[doi:10.3969/j.issn.1000-5013.2005.03.004]
 Shan Shuangrong.A Three-Layer Explicit Difference Scheme for Solving the Parabolic Equation of Higher Order[J].Journal of Huaqiao University(Natural Science),2005,26(3):239.[doi:10.3969/j.issn.1000-5013.2005.03.004]

备注/Memo

备注/Memo:
国务院侨务办公室科研基金资助项目(04QZR09)
更新日期/Last Update: 2014-03-23