[1]顾成扬.完全图Kn的{P4,S4,C4}-分解[J].华侨大学学报(自然科学版),2005,26(2):222-224.[doi:10.3969/j.issn.1000-5013.2005.02.030]
 Gu Chengyang.Decomposition of Complete Graph Kn into {P4, S4,C4}[J].Journal of Huaqiao University(Natural Science),2005,26(2):222-224.[doi:10.3969/j.issn.1000-5013.2005.02.030]
点击复制

完全图Kn的{P4,S4,C4}-分解()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第26卷
期数:
2005年第2期
页码:
222-224
栏目:
出版日期:
2005-04-20

文章信息/Info

Title:
Decomposition of Complete Graph Kn into {P4, S4,C4}
文章编号:
1000-5013(2005)02-0222-03
作者:
顾成扬
淮阴师范学院数学系 江苏淮安223001
Author(s):
Gu Chengyang
Department of Mathematics, Huaiyin Teachers College, 223001, Huaian, China
关键词:
完全图K_n 完全二部图Kmn 路P_k 星S_k 圈C_k
Keywords:
complete graphs K_n complete bipartite graphs K(m n) path P_k star S_k cycle C_k
分类号:
O157.5
DOI:
10.3969/j.issn.1000-5013.2005.02.030
文献标志码:
A
摘要:
讨论完全图Kn分解成4个顶点的路、星和圈的存在性.给出完全图Kn存在{C4,S4},{P4,C4},{P4,S4},{P4,S4,C4}分解以及强制分解的充要条件.
Abstract:
Regarding the decomposition of complete graph Kn into four apexes, the author discusses the existence of its path, star and circle; and gives necessary and sufficient conditions for complete graph Kn to have {C4, S4},{P4, C4}, {P4, S4} and {P4, S4,C4} decomposition and coercive decomposition.

参考文献/References:

[1] Ushio K. G-designs and related designs [J]. Discrete Mathematics, 1993.299-311.doi:10.1016/0012-365X(93)90408-L.
[2] Bondy J A, Murty, U S R. Graph theory with applications [M]. London:Macmillan, 1976.1-111.
[3] Bermond J C, Schonheim J. G-decompositions of Kn, where G has four vertices or less [J]. Discrete Mathematics, 1977.113-120.
[4] Sotteau D. Decomposition of Km, n (Km, n) into cycles(circuits) of length 2k [J]. Combinatorial Theory(Series B), 1981.75-81.
[5] Yamamoto S, Ikeda H, Shigeeda S. On claw-decomposition of complete graphs and complete bipartite graphs [J]. Hiroshima Mathematical Journal, 1975.33-42.
[6] 童翔, 顾成扬. 关于完全图Kn的{P4, C4}-分解 [J]. 吉林化工学院学报, 2003(4):119-120.doi:10.3969/j.issn.1007-2853.2003.04.044.

备注/Memo

备注/Memo:
江苏省高校自然科学基金资助项目(03KJB110012)
更新日期/Last Update: 2014-03-23