[1]曾志兴.静水压力作用下两铰圆拱稳定的截面优化设计[J].华侨大学学报(自然科学版),2005,26(2):149-151.[doi:10.3969/j.issn.1000-5013.2005.02.010]
 Zhen Zixing.Optimizedly Designing the Stable Section of Two-Hinged Circular Arch under the Action of Hydrostatic Pressure[J].Journal of Huaqiao University(Natural Science),2005,26(2):149-151.[doi:10.3969/j.issn.1000-5013.2005.02.010]
点击复制

静水压力作用下两铰圆拱稳定的截面优化设计()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第26卷
期数:
2005年第2期
页码:
149-151
栏目:
出版日期:
2005-04-20

文章信息/Info

Title:
Optimizedly Designing the Stable Section of Two-Hinged Circular Arch under the Action of Hydrostatic Pressure
文章编号:
1000-5013(2005)02-0149-03
作者:
曾志兴
华侨大学土木工程学院 福建泉州362021
Author(s):
Zhen Zixing
College of Civil Engineering, Huaqiao University, 362021, Quanzhou, China
关键词:
圆拱 稳定 优化设计 临界荷载
Keywords:
circular arch stability optimized design critical load
分类号:
TU311.4
DOI:
10.3969/j.issn.1000-5013.2005.02.010
文献标志码:
A
摘要:
采用泛函极值分析方法,推导出圆拱截面函数和挠曲函数的稳定方程.利用瑞利里兹法,近似求解在静水压力作用下,两铰圆拱呈反对称屈曲和正对称屈曲状态的临界荷载和截面的优化形式.
Abstract:
By adopting the method of functional extremum analysis, the author derives the stability equation for section function and flexure function of circular arch. By using Rayleigh-Ritz method, he solves approximately the optimized form of critical load and section of two-hinged circular arch in antisymmetrical buckling and symmetrical buckling state under the action of hydrostatic pressure.

参考文献/References:

[1] Keller J B. The shape of the strongest column, archive for rational [J]. Mechanics and Analysis, 1960(5):275-285.doi:10.1007/BF00252909.
[2] Tadjbakhsh I, Keller J B. Strongest column and isoperimetric inequalities for eigenvalue [J]. Journal of Applied Mechanics, Transactions ASME, 1962(1):159-164.
[3] Olhoff N, Rasmussen S H. On single and bimodal optimum buckling loads of clamped column [J]. International Journal of Solids and Structures, 1977(7):605-614.doi:10.1016/0020-7683(77)90043-9.
[4] 彭兴黔. 两端弹性铰支约束下压杆稳定的优化设计 [J]. 华侨大学学报(自然科学版), 2002(1):45-49.doi:10.3969/j.issn.1000-5013.2002.01.011.
[5] 潘岳, 刘瑞昌. 静水压力作用下圆拱正对称失稳临界力的求解 [J]. 岩土力学, 1999(1):39-43.doi:10.3969/j.issn.1000-7598.1999.01.007.
[6] 戚云松, 潘岳. 垂直分布荷载作用下固支圆拱的对称失稳临界力 [J]. 力学与实践, 2003(5):34-36.doi:10.3969/j.issn.1000-0879.2003.05.011.
[7] 彭兴黔, 郭子雄. 圆拱稳定的变分分析 [J]. 华侨大学学报(自然科学版), 2003(3):271-274.doi:10.3969/j.issn.1000-5013.2003.03.009.
[8] 王连祥, 方德植, 张鸣镛. 数学手册 [M]. 北京:高等教育出版社, 1977.965-967.

相似文献/References:

[1]林建华.压杆非保守稳定问题的边界区域单元法[J].华侨大学学报(自然科学版),1992,13(2):218.[doi:10.11830/ISSN.1000-5013.1992.02.0218]
 Lin Jianhua.Border Zone Element Method for Solving the Stability of Compression Member Subjected to Non-Conservative Forces[J].Journal of Huaqiao University(Natural Science),1992,13(2):218.[doi:10.11830/ISSN.1000-5013.1992.02.0218]
[2]方德平,林赞生,陈銧.平面刚架稳定问题的一种非线性分析方法[J].华侨大学学报(自然科学版),1992,13(3):358.[doi:10.11830/ISSN.1000-5013.1992.03.0358]
 Fang Deping,Lin Zansheng,Chen Guang,et al.A Non-Linear Method for Analysing the Stability of Plane Frames[J].Journal of Huaqiao University(Natural Science),1992,13(2):358.[doi:10.11830/ISSN.1000-5013.1992.03.0358]
[3]王世平,王全凤.大跨度RC天桥施工全过程的力学分析[J].华侨大学学报(自然科学版),2001,22(2):178.[doi:10.3969/j.issn.1000-5013.2001.02.016]
 Wang Shiping,Wang Quanfeng.Mechanical Analysis of a Long Span RC Overpass during the Whole Course of Its Construction[J].Journal of Huaqiao University(Natural Science),2001,22(2):178.[doi:10.3969/j.issn.1000-5013.2001.02.016]
[4]彭兴黔,郭子雄.圆拱稳定的变分分析[J].华侨大学学报(自然科学版),2003,24(3):271.[doi:10.3969/j.issn.1000-5013.2003.03.009]
 Peng Xingqian,Guo Zixiong.Variation Analysis of the Stability of Circular Arch[J].Journal of Huaqiao University(Natural Science),2003,24(2):271.[doi:10.3969/j.issn.1000-5013.2003.03.009]
[5]彭兴黔,曾志兴.静水压力下无铰圆拱稳定的截面优化设计[J].华侨大学学报(自然科学版),2006,27(4):381.[doi:10.3969/j.issn.1000-5013.2006.04.013]
 Peng Xingqian,Zeng Zhixing.Optimal Section Design of Stability for the Circular Hingeless Arch with Fixed Supports under Hydraulic Pressure[J].Journal of Huaqiao University(Natural Science),2006,27(2):381.[doi:10.3969/j.issn.1000-5013.2006.04.013]

备注/Memo

备注/Memo:
福建省青年科技人才创新基金资助项目(2004J031)
更新日期/Last Update: 2014-03-23