[1]朱婵,许龙飞.聚类算法在基因表达数据分析中的应用[J].华侨大学学报(自然科学版),2005,26(1):7-10.[doi:10.3969/j.issn.1000-5013.2005.01.002]
 Zhu Chan,Xu Longfei.Application of Clustering Algorithms to the Analysis of Gene Expression Data[J].Journal of Huaqiao University(Natural Science),2005,26(1):7-10.[doi:10.3969/j.issn.1000-5013.2005.01.002]
点击复制

聚类算法在基因表达数据分析中的应用()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第26卷
期数:
2005年第1期
页码:
7-10
栏目:
出版日期:
2005-01-20

文章信息/Info

Title:
Application of Clustering Algorithms to the Analysis of Gene Expression Data
文章编号:
1000-5013(2005)01-0007-04
作者:
朱婵许龙飞
暨南大学信息科技学院; 暨南大学信息科技学院 广东广州510632; 广东广州510632
Author(s):
Zhu Chan Xu Longfei
College of Information Science and Technology, Jinan University, 510632, Guangzhou, China
关键词:
生物信息学 基因表达数据 聚类算法
Keywords:
bioinformatics gene expression data clustering algorithm
分类号:
Q786
DOI:
10.3969/j.issn.1000-5013.2005.01.002
文献标志码:
A
摘要:
聚类算法在基因表达数据的分析处理中得到日益广泛的应用 .文中对几种典型的聚类算法进行描述,对各算法在基因表达数据处理中的特点,进行评价并提出改进的策略 .最后,指出聚类算法在生物信息学应用中的发展趋势 .
Abstract:
Clustering algorithms have become increasingly important in analyzing and processing gene expression data. Several typical clustering methods are described here. After estimating the characteristic of clustering methods in processing gene expression data, some strategies for its improvement are proposed; and the trend of applying clustering algorithms to bioinformatics is pointed out.

参考文献/References:

[1] 孙啸, 王晔, 何农跃. 生物信息学在基因芯片中的应用 [J]. 生物物理学报, 2001(1):27-34.doi:10.3321/j.issn:1000-6737.2001.01.004.
[2] Eisen M, Spellman P, Brown P. Cluster analysis and display of genome-wide expression patterns [J]. Proceedings of the National Academy of Sciences of the United States of America, 1998, (95):14683-14688.
[3] 王富刚, 陈先农. 基因芯片数据的聚类分析 [J]. 国外医学(生物医学工程分册), 2004(2):98-101.doi:10.3760/cma.j.issn.1673-4181.2004.02.009.
[4] Kohonen T. Self-organizing maps [M]. Heidelherg: Springer, 2001.25-40.
[5] Bickel D R. Robust cluster analysis of microarray gene expression data with the number of clusters determined biologically [J]. BIOINFORMATICS, 2003(7):818-824.
[6] Somervuo P, Kohonen T. Self-organizing maps and learning vector quantization for feature sequences [J]. Neural Processing Letters, 1999(2):151-159.doi:10.1023/A:1018741720065.
[7] Raychaudhuri S, Chang J T, Imam F. The computational analysis of scientific literature to define and recognize gene expression clusters [J]. Nucleic Acids Research, 2003.4553-4560.doi:10.1093/nar/gkg636.
[8] Wicker N, Dembele D, Raffelsberger W. Density of points clustering, application to transcriptomic data anaylsis [J]. Nucleic Acids Research, 2002, (18):3992-4000.doi:10.1093/nar/gkf511.
[9] Li Liao, Noble W S. Combining pairwise sequence similarity and support vector machines for remote protein homology detection [J]. Recomb, 2002, (18):255-232.
[10] Kalton A, Wagstaff K, Yoo J. Generalized clustering, supervised learning, and data assignment [J]. KDD, 2001(1):299-304.
[11] Baldi P, Brunak S, 张东晖. 生物信息学-机器学习方法 [M]. 北京:中信出版社, 2003.276-279.

备注/Memo

备注/Memo:
国家自然科学基金资助项目(60374070); 广东省自然科学基金资助项目(031903)
更新日期/Last Update: 2014-03-23