[1]徐传忠,杨冠鲁.一种小波提升的电力有源滤波器[J].华侨大学学报(自然科学版),2004,25(4):366-370.[doi:10.3969/j.issn.1000-5013.2004.04.007]
 Xu Chuanzhong,Yang Guanlu.A Wavelet Lifting-Based Active Power Filter[J].Journal of Huaqiao University(Natural Science),2004,25(4):366-370.[doi:10.3969/j.issn.1000-5013.2004.04.007]
点击复制

一种小波提升的电力有源滤波器()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第25卷
期数:
2004年第4期
页码:
366-370
栏目:
出版日期:
2004-10-20

文章信息/Info

Title:
A Wavelet Lifting-Based Active Power Filter
文章编号:
1000-5013(2004)04-0366-05
作者:
徐传忠杨冠鲁
华侨大学信息科学与工程学院; 华侨大学信息科学与工程学院 福建泉州362021; 福建泉州362021
Author(s):
Xu Chuanzhong Yang Guanlu
College of Info. Sci. & Eng., Huaqiao Univ., 362021, Quanzhou, China
关键词:
小波变换 小波提升 欧几里得定理 谐波
Keywords:
wavelet transform wavelet lifting Euclidean axiom harmonic wave.
分类号:
TN713
DOI:
10.3969/j.issn.1000-5013.2004.04.007
文献标志码:
A
摘要:
提升算法是一种新的双正交小波构造方法,在时域对信号进行变换就可完成对信号频域特性的分析 .介绍提升算法的原理及实现步骤,将Daubechies9/ 7小波滤波器的提升格式应用于电力有源滤波器的设计 .它使得计算复杂度大大降低,有效地减少运行时间,提高滤波器的实时性,具有更好的实用性能
Abstract:
Lifting algorithm is a new method of biorthogonal wavelet construction, by which analysis of frequency-domain characteristic of signal can be completed rightly after signal transformation at time domain. The authors provide information about principle of lifting algorithm and proeedure of its implementation; and apply lifting scheme of Daubechies 9/7 wavelet filter to the design of active power filter. These make the complexity of computation to lower greatly and the working time to reduce effectively. Thus the filter has an improved real-time character and a better practical performance.

参考文献/References:

[1] 胡铭, 陈珩. 有源滤波技术及应用 [J]. 电力系统自动化, 2002, (10):66-70.doi:10.3321/j.issn:1000-1026.2000.03.018.
[2] 钱照明, 叶忠明, 董伯藩. 谐波抑制技术 [J]. 电力系统自动化, 1997(1):48-45.
[3] 陈燕, 刘涤尘. 基于Matlab的有源滤波系统电流补偿研究 [J]. 电力建设, 2002(4):45-47.doi:10.3969/j.issn.1000-7229.2002.06.018.
[4] 彭辉, 宁飞, 孔宇. 小波的提升方法在基音提取中的应用 [J]. 山东大学学报(自然科学版), 2003, (1):55-57.doi:10.3969/j.issn.1671-9352.2003.01.013.
[5] SWELDEN W. The lifting scheme: A construction of second generation wavelet [J]. SIAM Journal on Mathematical Analysis, 1998, (29):511-546.doi:10.1137/S0036141095289051.
[6] Daubechies I, Sweldens W. Factoring wavelet transforms into lifting steps [J]. Journal of Fourier Analysis and Applications, 1998(3):245-267.
[7] 周宁, 汤晓军, 孙飞. 提升小波快速算法及其在JPEG 2000中的应用 [J]. 中国有线电视, 2002, (18):6-10.doi:10.3969/j.issn.1007-7022.2002.18.001.

相似文献/References:

[1]吴波,周小成,高海燕.面向混合像元分解的光谱维小波特征提取[J].华侨大学学报(自然科学版),2008,29(1):156.[doi:10.11830/ISSN.1000-5013.2008.01.0156]
 WU Bo,ZHOU Xiao-cheng,GAO Hai-yan.Wavelet Feature Abstraction for Linear Spectral Mixture Pixel Decomposition[J].Journal of Huaqiao University(Natural Science),2008,29(4):156.[doi:10.11830/ISSN.1000-5013.2008.01.0156]
[2]冯小明,冯乃光,汪云云.离散小波变换与奇异值分解的音频信号水印算法[J].华侨大学学报(自然科学版),2016,37(6):770.[doi:10.11830/ISSN.1000-5013.201606022]
 FENG Xiaoming,FENG Naiguang,WANG Yunyun.Watermarking Algorithm of Audio Signal Based on Discrete Wavelet Transform and Singular Value Decomposition[J].Journal of Huaqiao University(Natural Science),2016,37(4):770.[doi:10.11830/ISSN.1000-5013.201606022]

更新日期/Last Update: 2014-03-23