[1]曾文平.四阶抛物型方程的三层恒稳差分格式[J].华侨大学学报(自然科学版),2004,25(4):349-351.[doi:10.3969/j.issn.1000-5013.2004.04.003]
 Zeng Wenping.Three Layered Steady Difference Scheme for Solving Four Order Parabolic Equation[J].Journal of Huaqiao University(Natural Science),2004,25(4):349-351.[doi:10.3969/j.issn.1000-5013.2004.04.003]
点击复制

四阶抛物型方程的三层恒稳差分格式()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第25卷
期数:
2004年第4期
页码:
349-351
栏目:
出版日期:
2004-10-20

文章信息/Info

Title:
Three Layered Steady Difference Scheme for Solving Four Order Parabolic Equation
文章编号:
1000-5013(2004)04-0349-03
作者:
曾文平
华侨大学数学系 福建泉州362021
Author(s):
Zeng Wenping
Dept. of Math., Huaqiao Univ., 362021, Quanzhou, China
关键词:
差分格式 四阶抛物型方程 稳定性
Keywords:
difference scheme four order parabolic equation stability
分类号:
O241.82
DOI:
10.3969/j.issn.1000-5013.2004.04.003
文献标志码:
A
摘要:
为了解四阶抛物型方程 u t+ 4u x4=0,建立两类新的、具三对角线型系数矩阵的三层隐式差分格式 其局部截断误差阶均为O(τ2 +h2 +(τh) 2 ),且都是绝对稳定的,并可用追赶法容易地求解 数值例子表明这些格式是有效的
Abstract:
For solving four order parabolic equation ut+ 4ux 4=0, the author advances two new classes of three layered implicit difference scheme with coefficient matrix of tridiagonal type. The local truncation error of these schemes are all in the order of O(τ 2+h 2). They are all absolutely stable and can easily be solved by speed-up method. They are indicated by numerical example to be effective.

参考文献/References:

[1] Саулbев B K, 袁兆鼎. 抛物型方程的网格积分法 [M]. 北京:科学出版社, 1963.143-152.
[2] MILLER J J H. On the location of zeros of certain classes of polynomials with application to numerical analysis [J]. Journal of the Institute of Mathematics and Its Applications, 1971.394-406.
[3] Richtmyer R D, Morton K W. Difference method for initial-value problems [M]. New York:Wiley, 1967.38-183.

相似文献/References:

[1]苏远生.色散方程ut=auxxx的两个半显式绝对稳定差分格式[J].华侨大学学报(自然科学版),1989,10(2):110.[doi:10.11830/ISSN.1000-5013.1989.02.0110]
 Su Yuansheng.Two Absolutely Stable Semi-Explict Difference Schemes for Dispersion Equation ut=auxxx[J].Journal of Huaqiao University(Natural Science),1989,10(4):110.[doi:10.11830/ISSN.1000-5013.1989.02.0110]
[2]曾文平.一族绝对稳定的高精度差分格式[J].华侨大学学报(自然科学版),1994,15(3):257.[doi:10.11830/ISSN.1000-5013.1994.03.0257]
 Zeng Wenping.A Family of Absolutely Stable and High Accurate Difference Schemes[J].Journal of Huaqiao University(Natural Science),1994,15(4):257.[doi:10.11830/ISSN.1000-5013.1994.03.0257]
[3]王子丁.解高维Schrodinger方程的一类稳定的显格式[J].华侨大学学报(自然科学版),1995,16(1):13.[doi:10.11830/ISSN.1000-5013.1995.01.0013]
 Wang Ziding.A Class of Stable Explicit Schemes for Solving Higher Dimensional Schr dinger Equations[J].Journal of Huaqiao University(Natural Science),1995,16(4):13.[doi:10.11830/ISSN.1000-5013.1995.01.0013]

备注/Memo

备注/Memo:
国务院侨务办公室科研基金资助项目(02QZR07)
更新日期/Last Update: 2014-03-23