[1]龙波涌,黄心中.可延拓成N类函数的极值问题[J].华侨大学学报(自然科学版),2004,25(4):343-348.[doi:10.3969/j.issn.1000-5013.2004.04.002]
 Long Boyong,Huang Xinzhong.Extremal Problems for Some Functions to be Extended into Class N[J].Journal of Huaqiao University(Natural Science),2004,25(4):343-348.[doi:10.3969/j.issn.1000-5013.2004.04.002]
点击复制

可延拓成N类函数的极值问题()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第25卷
期数:
2004年第4期
页码:
343-348
栏目:
出版日期:
2004-10-20

文章信息/Info

Title:
Extremal Problems for Some Functions to be Extended into Class N
文章编号:
1000-5013(2004)04-0343-06
作者:
龙波涌黄心中
华侨大学数学系; 华侨大学数学系 福建泉州362021; 福建泉州362021
Author(s):
Long Boyong Huang Xinzhong
Dept. of Math., Huaqiao Univ., 362021, Quanzhou, China
关键词:
N类函数 延拓 极值拟共形映照
Keywords:
function of class N norm extension extremal quasiconformal mapping
分类号:
O174
DOI:
10.3969/j.issn.1000-5013.2004.04.002
文献标志码:
A
摘要:
对N类函数的性质进行进一步的研究,得到一些可延托成N类函数的判别条件 .结果指出,Reich在相应文献中所提出的充分条件并非必要的 .利用给出的一些延拓的方法,找到某些可延拓成类函数的函数类,其再次延拓后的模是减少的
Abstract:
By further studying the property of the functions of class N, the authors obtain some conditions for discrimi-nating the functions which can be extended inward into class N. As shown by the results, the sufficient condition given by Reich in corresponding literature is unnecessary. By using some methods of extension given in this paper, the authors have found certain class of functions which can be extended into function of class N; and the essential norms of which are reduced after extending once again.

参考文献/References:

[1] Ahlfors L V. Some remarker on Teichmuller’s space of Riemann surfaces [J]. Annuals of Mathematics, 1961(1):171-191.doi:10.2307/1970309.
[2] Reich E, Strebel K. On quasiconformal mappings which keep the boundary points fixed [J]. Transactions of the American Mathematical Society, 1969.211-222.
[3] Reich E. On the mapping with complex dilatation [J]. Annales Academic Scientiarum Fennicae Mathematica, 1987.261-267.
[4] Cieslak W, Zajac J. Remarks on the Ahlfors class N in an annulus [J]. Annales Academic Scientiarum Fennicae Mathematica, 1976.429-445.
[5] Reich E. An extremun problem for analytic functions with area norms [J]. Annales Academic Scientiarum Fennicae Mathematica, 1976.429-445.
[6] Hamilton R S. Extremal quasiconformal mappings with prescribed boundary values [J]. Transactions of the American Mathematical Society, 1969.399-406.
[7] Reich E, Strebel K. Extremal quasiconformal mappings with given boundary values:Contributions to analysis [M]. New York:Academic Press, 1974.375-391.

相似文献/References:

[1]温琴珠.量子环面上的斜导子李代数模的导子[J].华侨大学学报(自然科学版),2009,30(5):585.[doi:10.11830/ISSN.1000-5013.2009.05.0585]
 WEN Qin-zhu.The Derivations From the Lie Algebra of Skew Derivations on Quantum Torus to Its Modules[J].Journal of Huaqiao University(Natural Science),2009,30(4):585.[doi:10.11830/ISSN.1000-5013.2009.05.0585]

更新日期/Last Update: 2014-03-23