[1]王维德,赵鹏.局部法模拟计算塔板气泡直径[J].华侨大学学报(自然科学版),2004,25(3):231-236.[doi:10.3969/j.issn.1000-5013.2004.03.002]
 Wang Weide,Zhao Peng.Analog Calculation of the Diameter of Bubbles on the Trays[J].Journal of Huaqiao University(Natural Science),2004,25(3):231-236.[doi:10.3969/j.issn.1000-5013.2004.03.002]
点击复制

局部法模拟计算塔板气泡直径()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第25卷
期数:
2004年第3期
页码:
231-236
栏目:
出版日期:
2004-07-20

文章信息/Info

Title:
Analog Calculation of the Diameter of Bubbles on the Trays
文章编号:
1000-5013(2004)03-0231-06
作者:
王维德赵鹏
华侨大学材料科学与工程学院; 华侨大学材料科学与工程学院 福建泉州362021; 福建泉州362021
Author(s):
Wang Weide Zhao Peng
College of Mater. Sci. & Eng., Huaqiao Univ., 362021, Quanzhou, China
关键词:
气泡直径 破裂 聚并
Keywords:
bubble diameter break-up coalescence
分类号:
TQ05
DOI:
10.3969/j.issn.1000-5013.2004.03.002
文献标志码:
A
摘要:
蒸馏过程的传质速率与塔板上气液泡沫层传质面积有关,传质面积由气泡直径大小、分布和浓度所决定 .塔板气泡大小或者采用实验测定,或者采用模拟计算 .模拟计算有两类方法,即局部法和总体法 .文中重点介绍局部法模拟计算气泡直径的方法、数学模型和研究进展
Abstract:
During the process of distillation, mass transfer rate relates to mass transfer area of gas liquid foam layer on the trays, while mass transfer area is decided by diameter and distribution and concentration of bubbles. The size of bubbles on the trays are determined either by experiment or by analog calculation. The ways of analog calculation of bubble size includes local method and global method. This paper reviews local method, mathematical model and progress of studies.

参考文献/References:

[1] 宋海华, 王秀丽, 李红海. 精馏塔板上气液相界面积的测量与预测 [J]. 化工学报, 2003(8):1112-1116.doi:10.3321/j.issn:0438-1157.2003.08.014.
[2] 李天成, 辛峰, 李鑫钢. 电导法测定气-液鼓泡床反应器内的气泡直径 [J]. 天津大学学报(自然科学与工程技术版), 2002(2):231-234.doi:10.3969/j.issn.0493-2137.2002.02.024.
[3] 周滢, 朱菊香, 俞晓梅. 筛板塔中单孔鼓泡气泡团的研究 [J]. 浙江工业大学学报, 2002(2):104-108.doi:10.3969/j.issn.1006-4303.2002.02.003.
[4] Demenico C, Damiano V, Roberto B. A study on coalescence and breakage mechanisms in three different bubble columns [J]. Chemical Engineering Science, 1999, (21):4767-4777.doi:10.1016/S0009-2509(99)00193-1.
[5] Tse K, Martin T, Mcfarlane C M. Visualisation of bubble coalescence in a coalescence cell, a stirred tank and a bubble column [J]. Chemical Engineering Science, 1998, (18):4031-4037.doi:10.1016/S0009-2509(98)00182-1.
[6] Ross S L, Verhoff F H, Curl R L. Droplet breakage and coalescence processes in an agitated dispersion [J]. Industrial and Engineering Chemistry Research, 1978(1):101-108.
[7] Lehr F, Mewes D. A transport equation for the interfacial area density applied to bubble columns [J]. Chemical Engineering Science, 2001(3):1159-1166.
[8] 王维德, 余国琮. 浓度与传质系数的关系研究 [J]. 化工学报, 2002(5):517-521.doi:10.3321/j.issn:0438-1157.2002.05.017.
[9] 王维德. 浓度对传质系数的影响及多元物系传质研究 [J]. 化工学报, 2003(5):601-605.doi:10.3321/j.issn:0438-1157.2003.05.005.
[10] 王维德, 余国琮. 塔板上气泡直径的模拟计算 [J]. 化工进展, 2002, (Z1):55-57.doi:10.3321/j.issn:1000-6613.2002.z1.015.
[11] 王维德. 多元非理想物系传质过程研究 [D]. 天津大学, 2002.46-80.
[12] Lu H, Liu W, Li F. Eulerian simulations of bubble behaviour in a two-dimensional gas-solid bubbling fluidized bed [J]. International Journal of Energy Research, 2002, (15):1285-1293.doi:10.1002/er.802.
[13] Krishna R, Van Baten J M. Scaling up bubble column reactors with the aid of CFD [J]. Chemical engineering Research and Design, 2001(3):283-309.doi:10.1205/026387601750281815.
[14] Van Baten J M, Krishna R. CFD simulations of a bubble column operating in the homogeneous and heterogeneous flow regimes [J]. Chemical Engineering and Technology, 2002, (11):1081-1086.doi:10.1002/1521-4125(20021105)25:11< 1081::AID-CEAT1081> 3.0.CO; 2-Y.
[15] Krishna R, Van Baten J M. Modelling sieve tray hydraulics using computational fluid dynamics [J]. Chemical engineering Research and Design, 2003(1):27-38.doi:10.1205/026387603321158168.
[16] Luo H, Svendsen H F. Theoretical model for drop and bubble breakup in turbulent dispersions [J]. AICHE Journal, 1996(5):1225-1233.doi:10.1002/aic.690420505.
[17] Millies M, Mewes D. Interfacial area density in bubble flow [J]. Chemical Engineering Progress, 1999.307-319.doi:10.1016/S0255-2701(99)00022-7.
[18] Fleicher C, Becker S, Eigenberger G. Detailed modeling of the chemisorption of CO2 into NaOH in a bubble column [J]. Chemical engineering science, 1996, (10):1715-1724.doi:10.1016/0009-2509(96)00030-9.
[19] Kumar S, Ramkrishna D. On the solution of population balance equations by discretization(Ⅰ): A fixed pivot technique [J]. Chemical engineering science, 1996(8):1311-1332.doi:10.1016/0009-2509(96)88489-2.
[20] Kumar S, Ramkrishna D. On the solution of population balance equations by discretization(Ⅱ): A moving pivot technique [J]. Chemical engineering science, 1996(8):1333-1342.doi:10.1016/0009-2509(95)00355-X.
[21] Tsouris C, Tavlarides L L. Breakage and coalescence models for drops in turbulent dispersions [J]. AICHE Journal, 1994(3):395-406.
[22] Prince M J, Blanch H W. Bubble coalescence and break-up in air-sparged bubble columns [J]. AICHE Journal, 1990, (10):1485-1499.doi:10.1002/aic.690361004.
[23] Marrucci G. A theory of coalescence [J]. Chemical Engineering Science, 1969.975-986.doi:10.1016/0009-2509(69)87006-5.
[24] KIM W K, Lee K L. Coalescence behavior of two bubbles in stagnant liquids [J]. Journal of Chemical Engineering of Japan, 1987(5):449-453.
[25] Calderbank P H, Moo-Young M, Bibbly R. Coalescence in bubble reactors and absorbers [J]. Proc Euro Symp on Reaction Eng, 1964(3):91-97.
[26] Chesters A K. The modeling of coalescence processes in fluid-liquid dispersions: A review of current understanding [J]. Transactions of the Institution of Chemical Engineers, 1991(4):259-270.
[27] Coulaloglou C A, Tavlarides L L. Description of interaction processes in agitated liquid-liquid dispersions [J]. Chemical Engineering Science, 1977, (11):1289-1297.
[28] Valentas K J, Amundson N R. Breakage and coalescence in dispersed systems [J]. Industrial and Engineering Chemistry Research, 1966(4):533-542.
[29] Narsimham G, Gupta J P. A model for transitional breakage probability of droplets in agitated lean liquid-liquid dispersions [J]. Chemical Engineering Science, 1979(2):257-265.doi:10.1016/0009-2509(79)87013-X.
[30] Chatzi E G, Gavrielides A D, Kiparissides C. Generalized model for prediction of the steady-state drop size dispersions in batch stirred vessels [J]. Industrial and Engineering Chemistry Research, 1989, (11):1704-1710.doi:10.1021/ie00095a022.
[31] Stewart C W. Bubble interaction in low-viscosity liquids [J]. International Journal of Multiphase Flow, 1995(6):1037-1046.doi:10.1016/0301-9322(95)00030-2.
[32] HINZE J O. Fundamentals of the hydrodynamic mechanism of splitting in dispersion processes [J]. AICHE Journal, 1955(2):289-295.
[33] Walter J F, Blanch H W. Bubble break-up in gas-liquid bioreactor: Break-up in turbulent flows [J]. Chemical Engineering Journal, 1986(1):7-17.doi:10.1016/0300-9467(86)85011-0.
[34] Lee C H, Herickson L E, Glasgow L A. Bubble break-up and coalescence in turbulent gas-liquid dispersion [J]. Chemical Engineering Communications, 1987(1):65-84.doi:10.1080/00986448708911986.
[35] Hesketh R P, Etchells A W, Russell T W. Bubble breakage in pipeline flow [J]. Chemical Engineering Science, 1991(1):1-9.
[36] Hesketh R P, Etchells A W, Russell T W. Experimental observation of bubble breakage in turbulent flow [J]. Industrial and Engineering Chemistry Research, 1991(5):835-841.doi:10.1021/ie00053a005.
[37] Miyahara T, Tsuchiya K, Fan L S. Effect of turbulent wake on bubble-bubble interactions in a gas-solid fluidized bed [J]. Chemical Engineering Science, 1991(9):2368-2373.doi:10.1016/0009-2509(91)85137-M.

备注/Memo

备注/Memo:
国务院侨务办公室科研基金资助项目(01QZR06)
更新日期/Last Update: 2014-03-23