参考文献/References:
[1] 宋海华, 王秀丽, 李红海. 精馏塔板上气液相界面积的测量与预测 [J]. 化工学报, 2003(8):1112-1116.doi:10.3321/j.issn:0438-1157.2003.08.014.
[2] 李天成, 辛峰, 李鑫钢. 电导法测定气-液鼓泡床反应器内的气泡直径 [J]. 天津大学学报(自然科学与工程技术版), 2002(2):231-234.doi:10.3969/j.issn.0493-2137.2002.02.024.
[3] 周滢, 朱菊香, 俞晓梅. 筛板塔中单孔鼓泡气泡团的研究 [J]. 浙江工业大学学报, 2002(2):104-108.doi:10.3969/j.issn.1006-4303.2002.02.003.
[4] Demenico C, Damiano V, Roberto B. A study on coalescence and breakage mechanisms in three different bubble columns [J]. Chemical Engineering Science, 1999, (21):4767-4777.doi:10.1016/S0009-2509(99)00193-1.
[5] Tse K, Martin T, Mcfarlane C M. Visualisation of bubble coalescence in a coalescence cell, a stirred tank and a bubble column [J]. Chemical Engineering Science, 1998, (18):4031-4037.doi:10.1016/S0009-2509(98)00182-1.
[6] Ross S L, Verhoff F H, Curl R L. Droplet breakage and coalescence processes in an agitated dispersion [J]. Industrial and Engineering Chemistry Research, 1978(1):101-108.
[7] Lehr F, Mewes D. A transport equation for the interfacial area density applied to bubble columns [J]. Chemical Engineering Science, 2001(3):1159-1166.
[8] 王维德, 余国琮. 浓度与传质系数的关系研究 [J]. 化工学报, 2002(5):517-521.doi:10.3321/j.issn:0438-1157.2002.05.017.
[9] 王维德. 浓度对传质系数的影响及多元物系传质研究 [J]. 化工学报, 2003(5):601-605.doi:10.3321/j.issn:0438-1157.2003.05.005.
[10] 王维德, 余国琮. 塔板上气泡直径的模拟计算 [J]. 化工进展, 2002, (Z1):55-57.doi:10.3321/j.issn:1000-6613.2002.z1.015.
[11] 王维德. 多元非理想物系传质过程研究 [D]. 天津大学, 2002.46-80.
[12] Lu H, Liu W, Li F. Eulerian simulations of bubble behaviour in a two-dimensional gas-solid bubbling fluidized bed [J]. International Journal of Energy Research, 2002, (15):1285-1293.doi:10.1002/er.802.
[13] Krishna R, Van Baten J M. Scaling up bubble column reactors with the aid of CFD [J]. Chemical engineering Research and Design, 2001(3):283-309.doi:10.1205/026387601750281815.
[14] Van Baten J M, Krishna R. CFD simulations of a bubble column operating in the homogeneous and heterogeneous flow regimes [J]. Chemical Engineering and Technology, 2002, (11):1081-1086.doi:10.1002/1521-4125(20021105)25:11< 1081::AID-CEAT1081> 3.0.CO; 2-Y.
[15] Krishna R, Van Baten J M. Modelling sieve tray hydraulics using computational fluid dynamics [J]. Chemical engineering Research and Design, 2003(1):27-38.doi:10.1205/026387603321158168.
[16] Luo H, Svendsen H F. Theoretical model for drop and bubble breakup in turbulent dispersions [J]. AICHE Journal, 1996(5):1225-1233.doi:10.1002/aic.690420505.
[17] Millies M, Mewes D. Interfacial area density in bubble flow [J]. Chemical Engineering Progress, 1999.307-319.doi:10.1016/S0255-2701(99)00022-7.
[18] Fleicher C, Becker S, Eigenberger G. Detailed modeling of the chemisorption of CO2 into NaOH in a bubble column [J]. Chemical engineering science, 1996, (10):1715-1724.doi:10.1016/0009-2509(96)00030-9.
[19] Kumar S, Ramkrishna D. On the solution of population balance equations by discretization(Ⅰ): A fixed pivot technique [J]. Chemical engineering science, 1996(8):1311-1332.doi:10.1016/0009-2509(96)88489-2.
[20] Kumar S, Ramkrishna D. On the solution of population balance equations by discretization(Ⅱ): A moving pivot technique [J]. Chemical engineering science, 1996(8):1333-1342.doi:10.1016/0009-2509(95)00355-X.
[21] Tsouris C, Tavlarides L L. Breakage and coalescence models for drops in turbulent dispersions [J]. AICHE Journal, 1994(3):395-406.
[22] Prince M J, Blanch H W. Bubble coalescence and break-up in air-sparged bubble columns [J]. AICHE Journal, 1990, (10):1485-1499.doi:10.1002/aic.690361004.
[23] Marrucci G. A theory of coalescence [J]. Chemical Engineering Science, 1969.975-986.doi:10.1016/0009-2509(69)87006-5.
[24] KIM W K, Lee K L. Coalescence behavior of two bubbles in stagnant liquids [J]. Journal of Chemical Engineering of Japan, 1987(5):449-453.
[25] Calderbank P H, Moo-Young M, Bibbly R. Coalescence in bubble reactors and absorbers [J]. Proc Euro Symp on Reaction Eng, 1964(3):91-97.
[26] Chesters A K. The modeling of coalescence processes in fluid-liquid dispersions: A review of current understanding [J]. Transactions of the Institution of Chemical Engineers, 1991(4):259-270.
[27] Coulaloglou C A, Tavlarides L L. Description of interaction processes in agitated liquid-liquid dispersions [J]. Chemical Engineering Science, 1977, (11):1289-1297.
[28] Valentas K J, Amundson N R. Breakage and coalescence in dispersed systems [J]. Industrial and Engineering Chemistry Research, 1966(4):533-542.
[29] Narsimham G, Gupta J P. A model for transitional breakage probability of droplets in agitated lean liquid-liquid dispersions [J]. Chemical Engineering Science, 1979(2):257-265.doi:10.1016/0009-2509(79)87013-X.
[30] Chatzi E G, Gavrielides A D, Kiparissides C. Generalized model for prediction of the steady-state drop size dispersions in batch stirred vessels [J]. Industrial and Engineering Chemistry Research, 1989, (11):1704-1710.doi:10.1021/ie00095a022.
[31] Stewart C W. Bubble interaction in low-viscosity liquids [J]. International Journal of Multiphase Flow, 1995(6):1037-1046.doi:10.1016/0301-9322(95)00030-2.
[32] HINZE J O. Fundamentals of the hydrodynamic mechanism of splitting in dispersion processes [J]. AICHE Journal, 1955(2):289-295.
[33] Walter J F, Blanch H W. Bubble break-up in gas-liquid bioreactor: Break-up in turbulent flows [J]. Chemical Engineering Journal, 1986(1):7-17.doi:10.1016/0300-9467(86)85011-0.
[34] Lee C H, Herickson L E, Glasgow L A. Bubble break-up and coalescence in turbulent gas-liquid dispersion [J]. Chemical Engineering Communications, 1987(1):65-84.doi:10.1080/00986448708911986.
[35] Hesketh R P, Etchells A W, Russell T W. Bubble breakage in pipeline flow [J]. Chemical Engineering Science, 1991(1):1-9.
[36] Hesketh R P, Etchells A W, Russell T W. Experimental observation of bubble breakage in turbulent flow [J]. Industrial and Engineering Chemistry Research, 1991(5):835-841.doi:10.1021/ie00053a005.
[37] Miyahara T, Tsuchiya K, Fan L S. Effect of turbulent wake on bubble-bubble interactions in a gas-solid fluidized bed [J]. Chemical Engineering Science, 1991(9):2368-2373.doi:10.1016/0009-2509(91)85137-M.