[1]潘孝铭.向前向后法证明一阶逻辑的几个定理[J].华侨大学学报(自然科学版),2004,25(2):203-205.[doi:10.3969/j.issn.1000-5013.2004.02.024]
 Pan Xiaoming.Proving Several Theorems in First Order Logic Based on Back-and-Forth Method[J].Journal of Huaqiao University(Natural Science),2004,25(2):203-205.[doi:10.3969/j.issn.1000-5013.2004.02.024]
点击复制

向前向后法证明一阶逻辑的几个定理()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第25卷
期数:
2004年第2期
页码:
203-205
栏目:
出版日期:
2004-04-20

文章信息/Info

Title:
Proving Several Theorems in First Order Logic Based on Back-and-Forth Method
文章编号:
1000-5013(2004)02-0203-03
作者:
潘孝铭
华侨大学信息科学与工程学院 福建泉州362011
Author(s):
Pan Xiaoming
College of Info. Sci. & Eng., Huaqiao Univ., 362011, Quanzhou, China
关键词:
模型论 一阶逻辑 向前向后方法 内插定理 保持定理
Keywords:
model theory first order logic back-and-forth method interpolation theorem preservation theorem
分类号:
O141.4; O153
DOI:
10.3969/j.issn.1000-5013.2004.02.024
文献标志码:
A
摘要:
向前向后方法是模型论及其应用研究中的一个很重要的工具 .一阶逻辑的内插定理和保持定理确定了符合某些条件的公式的存在性,经典模型论中对这些的证明较为繁难 .文中使用向前向后方法,对有限语言下一阶逻辑的内插定理和保持定理等几个定理,给出一种简洁的证明 .
Abstract:
Back-and-forth method is an important tool for studying model theory and its application. Interpolation theorem and preservation theorem in first order logic have determined the existence of first order formula in accordance with certain conditions, their proofs in classical model theory are fairly long and hard to tackle. By using back-and-forth method, the author gives interpolation theorem and preservation theorems a kind of succinct proofs in finite language.

参考文献/References:

[1] 王世强. 模型论基础 [M]. 北京:科学出版社, 2000.20-40.
[2] Doets K. Basic model theory [M]. North Holland:CSLI Publicaition, 1996.30-38.
[3] Barwise J, Van-Benthem J. Interpolation, perservation and pebble games [J]. Symbolic Logic, 1999(4):881-903.
[4] 潘孝铭. 模态逻辑两个定理的基于向前向后方法的证明 [J]. 北京工商大学学报(自然科学版), 2002(4):62-64.doi:10.3969/j.issn.1671-1513.2002.04.016.

备注/Memo

备注/Memo:
福建省青年科技人才创新基金资助项目(2002J011)
更新日期/Last Update: 2014-03-23