[1]曾文平.解双抛物型方程的两类恒稳差分格式[J].华侨大学学报(自然科学版),2004,25(1):14-17.[doi:10.3969/j.issn.1000-5013.2004.01.004]
 Zeng Wenping.Two Classes of Steady Difference Schemes for Solving Biparabolic Equation[J].Journal of Huaqiao University(Natural Science),2004,25(1):14-17.[doi:10.3969/j.issn.1000-5013.2004.01.004]
点击复制

解双抛物型方程的两类恒稳差分格式()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第25卷
期数:
2004年第1期
页码:
14-17
栏目:
出版日期:
2004-01-20

文章信息/Info

Title:
Two Classes of Steady Difference Schemes for Solving Biparabolic Equation
文章编号:
1000-5013(2004)01-0014-04
作者:
曾文平
华侨大学数学系 福建泉州362011
Author(s):
Zeng Wenping
Dept. of Math., Huaqiao Univ., 362011, Quanzhou, China
关键词:
双抛物型方程 绝对稳定 隐式差分格式
Keywords:
biparabolic equation absolutely stable implicit difference scheme
分类号:
O175.26
DOI:
10.3969/j.issn.1000-5013.2004.01.004
文献标志码:
A
摘要:
提出解双抛物型方程的两类新的具三对角线型系数矩阵的三层隐式差分格式,其局部截断误差阶分别为O(τ2 +h2 +τh)及O(τ2 +h2 +(τh) 2 ) .它们都是绝对稳定的且可用追赶法求解 .数值例子表明这些格式是有效的,理论分析是正确的 .
Abstract:
For solving biparabolic equation, the author presents two new classes of three layered implicit difference schemes with tridigonal matrix of coefficients. Their local truncation errors are in the order of O(τ 2+h 2+τh) and O(τ 2+h 2+(τh) 2) respectively. They are all absolutely stable and can be solved by speedup method. These schemes are shown by numerical example to be effective.

参考文献/References:

[1] Saul’yev V K. Integration of Equation of parabolic type by the method of nets, translated by tee [M]. New York: G,.
[2] 刘发旺. 解高阶抛物型方程的群显方法 [J]. 数值计算与计算机应用, 1990(1):1-9.
[3] MILLER J J H. On the location of zeros of certain classes of polynomials with application to numerical analysis [J]. Journal of the Institute of Mathematics and Its Applications, 1971(8):397-406.
[4] Forsythe G E, Wasow W R. Finite-difference methods for partial differential equation [M]. New York:John Wiley & Sons, 1960.73-95.

相似文献/References:

[1]曾文平.解多维抛物型方程的两个显式格式[J].华侨大学学报(自然科学版),1983,4(2):1.[doi:10.11830/ISSN.1000-5013.1983.02.0001]
[2]苏远生.色散方程ut=auxxx的两个半显式绝对稳定差分格式[J].华侨大学学报(自然科学版),1989,10(2):110.[doi:10.11830/ISSN.1000-5013.1989.02.0110]
 Su Yuansheng.Two Absolutely Stable Semi-Explict Difference Schemes for Dispersion Equation ut=auxxx[J].Journal of Huaqiao University(Natural Science),1989,10(1):110.[doi:10.11830/ISSN.1000-5013.1989.02.0110]
[3]曾文平.两类含参数高精度恒稳的半显式差分格式[J].华侨大学学报(自然科学版),1993,14(2):133.[doi:10.11830/ISSN.1000-5013.1993.02.0133]
 Zeng Wenping.Two Classes of Absolutely Stable and High Accuracy Difference Schemes Depending on a Parameter[J].Journal of Huaqiao University(Natural Science),1993,14(1):133.[doi:10.11830/ISSN.1000-5013.1993.02.0133]
[4]曾文平.一族绝对稳定的高精度差分格式[J].华侨大学学报(自然科学版),1994,15(3):257.[doi:10.11830/ISSN.1000-5013.1994.03.0257]
 Zeng Wenping.A Family of Absolutely Stable and High Accurate Difference Schemes[J].Journal of Huaqiao University(Natural Science),1994,15(1):257.[doi:10.11830/ISSN.1000-5013.1994.03.0257]
[5]曾文平.解四阶抛物型方程高精度恒稳的隐式格式[J].华侨大学学报(自然科学版),1996,17(4):331.[doi:10.11830/ISSN.1000-5013.1996.04.0331]
 Zeng Wenping.A Class of High Accurate and Absolutely Stable Implicit Difference Schemes for Solving Four Order Parabolic Equations[J].Journal of Huaqiao University(Natural Science),1996,17(1):331.[doi:10.11830/ISSN.1000-5013.1996.04.0331]
[6]曾文平.对流方程的一类新的恒稳差分格式[J].华侨大学学报(自然科学版),1997,18(3):225.[doi:10.11830/ISSN.1000-5013.1997.03.0225]
 Zeng Wenping.A Class of New Steady Difference Schemes for Convective Equation[J].Journal of Huaqiao University(Natural Science),1997,18(1):225.[doi:10.11830/ISSN.1000-5013.1997.03.0225]
[7]曾文平.高阶抛物型方程恒稳的显式差分格式[J].华侨大学学报(自然科学版),1998,19(2):124.[doi:10.11830/ISSN.1000-5013.1998.02.0124]
 Zeng Wenping.Absolutely Stable Explicit Difference Scheme for Sloving Parabolic Equation of Higher Order[J].Journal of Huaqiao University(Natural Science),1998,19(1):124.[doi:10.11830/ISSN.1000-5013.1998.02.0124]
[8]曾文平.解二维抛物型方程的恒稳高精度格式[J].华侨大学学报(自然科学版),1999,20(1):18.[doi:10.11830/ISSN.1000-5013.1999.01.0018]
 Zeng Wenping.A Family of Steady and High Accurate Difference Schemes for Solving Two Dimensional Equations of Parabolic Type[J].Journal of Huaqiao University(Natural Science),1999,20(1):18.[doi:10.11830/ISSN.1000-5013.1999.01.0018]
[9]黄浪扬,曾文平.抛物型方程的一族高精度恒稳格式[J].华侨大学学报(自然科学版),2000,21(2):124.[doi:10.3969/j.issn.1000-5013.2000.02.004]
 Huang langyang,Zeng Wenping.A Group of Steady Difference Schemes wth High Accuracy for Solving Parabolic Equation[J].Journal of Huaqiao University(Natural Science),2000,21(1):124.[doi:10.3969/j.issn.1000-5013.2000.02.004]
[10]陈世平,曾文平.对流方程的一族高精度恒稳格式[J].华侨大学学报(自然科学版),2001,22(2):122.[doi:10.3969/j.issn.1000-5013.2001.02.003]
 Chen Shiping,Zeng Wenping.A Group of Steady Schemes with High Accuracy for Solving Convective Equation[J].Journal of Huaqiao University(Natural Science),2001,22(1):122.[doi:10.3969/j.issn.1000-5013.2001.02.003]

备注/Memo

备注/Memo:
国务院侨务办公室科研基金资助项目(02QZR07)
更新日期/Last Update: 2014-03-23