[1]彭兴黔,郭子雄.圆拱稳定的变分分析[J].华侨大学学报(自然科学版),2003,24(3):271-274.[doi:10.3969/j.issn.1000-5013.2003.03.009]
 Peng Xingqian,Guo Zixiong.Variation Analysis of the Stability of Circular Arch[J].Journal of Huaqiao University(Natural Science),2003,24(3):271-274.[doi:10.3969/j.issn.1000-5013.2003.03.009]
点击复制

圆拱稳定的变分分析()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第24卷
期数:
2003年第3期
页码:
271-274
栏目:
出版日期:
2003-07-20

文章信息/Info

Title:
Variation Analysis of the Stability of Circular Arch
文章编号:
1000-5013(2003)03-0271-04
作者:
彭兴黔郭子雄
华侨大学土木工程系; 华侨大学土木工程系 福建泉州362011; 福建泉州362011
Author(s):
Peng Xingqian Guo Zixiong
Dept. of Civil Eng., Huaqiao Univ., 362011, Quanzhou, China
关键词:
圆拱 屈曲 变分分析 能量法
Keywords:
circular arch buckling variation analysis energy method
分类号:
TU311.4
DOI:
10.3969/j.issn.1000-5013.2003.03.009
文献标志码:
A
摘要:
根据势能原理,建立以位移为基本未知量的圆拱总势能 .采用变分分析,推导出圆拱在弯曲平面内的平衡微分方程 .应用能量法,可直接近似计算在均布压力作用下不同支承的变截面圆拱,以及在非均布压力作用下等截面圆拱屈曲的临界荷载 .算例表明,能量法计算圆拱稳定问题十分简便,适合于工程应用 .
Abstract:
The general potential energy of circular arch with displacement as fundamental unknown quantity is established according to principle of potential energy; the equilibrium differential equation of circular arch at a bending plane is derived by adopting variation analysis. By applying energy method, an approximate computation can be directly conducted on nonprismatic circular arch with different bearing under the action of uniformly distributed pressure and also on the critical load of prismatic circular arch in buckling under the action of non uniformly dcstributed pressure. As indicated by example of computation, energy method is very simple and convenient for computing the stability of circular arch, it is suitable for engineering application.

参考文献/References:

[1] Timoshenko S. Theory of elastic stability [M]. New York: McGraw-Hill Book Company Inc, 1936.204-238.
[2] 夏志斌, 潘有昌. 结构稳定理论 [M]. 北京:高等教育出版社, 1988.244-251.
[3] 项海帆, 刘光栋. 拱结构的稳定与振动 [M]. 北京:人民交通出版社, 1991.12-20.
[4] 朱先奎, 刘光栋. 变截面圆拱和圆环稳定计算的阶梯折算法 [J]. 建筑结构, 1999(1):52-56.

相似文献/References:

[1]林福泳.圆柱壳体液压屈曲问题的研究[J].华侨大学学报(自然科学版),1992,13(4):530.[doi:10.11830/ISSN.1000-5013.1992.04.0530]
 Lin Fuyong.A Study of the Flexion of Cylindrical Shell[J].Journal of Huaqiao University(Natural Science),1992,13(3):530.[doi:10.11830/ISSN.1000-5013.1992.04.0530]
[2]王金凤,李华煜.簿壁杆件在纯弯下屈曲的样条有限杆元法[J].华侨大学学报(自然科学版),1996,17(2):148.[doi:10.11830/ISSN.1000-5013.1996.02.0148]
 Wang Quanfeng,Li Huayu.Spline Finite Member Element Method for Analysing the Buckling of Thin-Walled Member under Pure Bending[J].Journal of Huaqiao University(Natural Science),1996,17(3):148.[doi:10.11830/ISSN.1000-5013.1996.02.0148]
[3]曾志兴.静水压力作用下两铰圆拱稳定的截面优化设计[J].华侨大学学报(自然科学版),2005,26(2):149.[doi:10.3969/j.issn.1000-5013.2005.02.010]
 Zhen Zixing.Optimizedly Designing the Stable Section of Two-Hinged Circular Arch under the Action of Hydrostatic Pressure[J].Journal of Huaqiao University(Natural Science),2005,26(3):149.[doi:10.3969/j.issn.1000-5013.2005.02.010]
[4]彭兴黔,曾志兴.静水压力下无铰圆拱稳定的截面优化设计[J].华侨大学学报(自然科学版),2006,27(4):381.[doi:10.3969/j.issn.1000-5013.2006.04.013]
 Peng Xingqian,Zeng Zhixing.Optimal Section Design of Stability for the Circular Hingeless Arch with Fixed Supports under Hydraulic Pressure[J].Journal of Huaqiao University(Natural Science),2006,27(3):381.[doi:10.3969/j.issn.1000-5013.2006.04.013]

备注/Memo

备注/Memo:
福建省自然科学基金资助项目(E0010028)
更新日期/Last Update: 2014-03-23