[1]曾文平.二维对流扩散方程恒稳的蛙跳积分格式[J].华侨大学学报(自然科学版),2002,23(3):232-239.[doi:10.3969/j.issn.1000-5013.2002.03.004]
 Zeng Wenping.A Steady Leapfrog Integration Scheme for Solving Two-Dimensional Convection-Diffusion Equation[J].Journal of Huaqiao University(Natural Science),2002,23(3):232-239.[doi:10.3969/j.issn.1000-5013.2002.03.004]
点击复制

二维对流扩散方程恒稳的蛙跳积分格式()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第23卷
期数:
2002年第3期
页码:
232-239
栏目:
出版日期:
2002-07-20

文章信息/Info

Title:
A Steady Leapfrog Integration Scheme for Solving Two-Dimensional Convection-Diffusion Equation
文章编号:
1000-5013(2002)03-0232-08
作者:
曾文平
华侨大学数学系 泉州362011
Author(s):
Zeng Wenping
Dept. of Math., Huaqiao Univ., 362011, Quanzhou
关键词:
二维对流扩散方程 蛙跳积分格式 无条件稳定 相容性条件
Keywords:
two dimensional convection diffusion equation leapfrog integration scheme unconditionally stable condition of consistency
分类号:
O241.8
DOI:
10.3969/j.issn.1000-5013.2002.03.004
文献标志码:
A
摘要:
给出二维对流扩散方程的单点精细积分法导出的显式蛙跳积分格式,并证明它是无条件稳定的 .进行相容性分析,给出相容性条件 .用数值例子,表明该格式是有效的 .
Abstract:
For solving two dimensional convection diffusion equation, the author gives here an explicit leapfrog integration scheme deriving from single point precise integration method. The scheme is proved to be unconditionally stable. Its consistency is analysed and the condition of its consisteney is given. The scheme is idicated by numerical example to be effective.

参考文献/References:

[1] Press w H, Teukolsky S A, Vetterling w T. Numerical recipes. 2nd ed [M]. Cambridge: Cambridge Univ. Press, 1992.152-173.
[2] 曾文平. 二维扩散方程的单点子域精细积分法 [J]. 计算力学学报, 2000(4):492-496.doi:10.3969/j.issn.1007-4708.2000.04.020.
[3] 钟万勰, 朱建平. 对差分法时程积分的反思 [J]. 应用数学和力学, 1995(8):663-668.
[4] Noye B J, Tan H H. Finite difference methods for solving the two dimensional advection-diffusion equation [J]. International Journal for Numerical Methods in Fluids, 1989(9):75-98.

备注/Memo

备注/Memo:
华侨大学自然科学基金资助项目
更新日期/Last Update: 2014-03-23