[1]曾文平.四阶杆振动方程的含参数四层显式格式[J].华侨大学学报(自然科学版),2002,23(2):116-121.[doi:10.3969/j.issn.1000-5013.2002.02.002]
 Zeng Wenping.Four-Level Explicit Difference Schemes Containing Parameters for Solving Equation of Four Order Rod Vibration[J].Journal of Huaqiao University(Natural Science),2002,23(2):116-121.[doi:10.3969/j.issn.1000-5013.2002.02.002]
点击复制

四阶杆振动方程的含参数四层显式格式()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第23卷
期数:
2002年第2期
页码:
116-121
栏目:
出版日期:
2002-04-20

文章信息/Info

Title:
Four-Level Explicit Difference Schemes Containing Parameters for Solving Equation of Four Order Rod Vibration
文章编号:
1000-5013(2002)02-0116-06
作者:
曾文平
华侨大学数学系 泉州362011
Author(s):
Zeng Wenping
Dept. of Math., Huaqiao Univ., 362011, Quanzhou
关键词:
四阶杆振动方程 显式差分格式 稳定性
Keywords:
equation of four order rod vibration explicit difference scheme stability
分类号:
O241.82
DOI:
10.3969/j.issn.1000-5013.2002.02.002
文献标志码:
A
摘要:
提出一类解四阶杆振动方程的含参数四层显式差分格式,其局部截断误差阶为 O(τ+ h2 ) .而在特殊情况下,它是一个单参数四层或三层显式差分格式,其局部截断误差阶为 O(τ2 + h2 ) .同时,讨论了它们的稳定性 .最后的数值例子,表明这些格式是有效的
Abstract:
For solving equation of four order rod vibration,the author advances a class of four level explicit difference schemes containing parameters, of which the order of local truncation error is O(τ 2+h 2) . Under special condition, it is a four level or three level explicit difference scheme containing single parameter, of which the order of local truncation error is O(τ 2+h 2) . The stability of them is discussed simultaneously. numerical examples indicate that these difference schemes are effective.

参考文献/References:

[1] 秦元勋. 计算物理学 [M]. 成都:四川科学技术出版社, 1984.87-96.
[2] 李荣华, 冯果忱. 微分方程数值解 [M]. 北京:高等教育出版社, 1980.374-376.
[3] Khaliq A Q M, Twizell E H. A family of second order methods for variab le coefficient fourth order partial differential equations [J]. International Journal of Computer Mathematics, 1987.1-7.
[4] 南京大学数学系. 偏微分方程数值解法 [M]. 北京:科学出版社, 1979.92-93.
[5] 马驷良, 徐桢殷. 实系数数三、四次多项式是Von Neumann多项式的充要条件 [J]. 高等学校计算数学学报, 1984(3):274-280.
[6] 矢岛信男, 野术达夫. 发展方程の数值解析 [M]. 东京:日本岩波书店, 1977.46-232.
[7] 萨乌里耶夫 B K, 袁兆鼎. 抛物型方程的网格积分法 [M]. 北京:科学出版社, 1963.140-143.

相似文献/References:

[1]曾文平.解多维抛物型方程的两个显式格式[J].华侨大学学报(自然科学版),1983,4(2):1.[doi:10.11830/ISSN.1000-5013.1983.02.0001]
[2]曾文平.解三维抛物型方程的高精度显式格式[J].华侨大学学报(自然科学版),1995,16(2):128.[doi:10.11830/ISSN.1000-5013.1995.02.0128]
 Zeng Wenping.High Accuracy Explicit Difference Schemes for Solving Three-Dimensional Equation of the Parabola[J].Journal of Huaqiao University(Natural Science),1995,16(2):128.[doi:10.11830/ISSN.1000-5013.1995.02.0128]
[3]曹文平.高阶发展方程的两类显式格式的稳定性分析[J].华侨大学学报(自然科学版),1996,17(3):231.[doi:10.11830/ISSN.1000-5013.1996.03.0231]
 Zeng Wenping.Stability Analysis of Two Classes of Explicit DifferenceSchemes for High-Order Evolution Equations[J].Journal of Huaqiao University(Natural Science),1996,17(2):231.[doi:10.11830/ISSN.1000-5013.1996.03.0231]
[4]曾文平.解四阶抛物型方程的高精度显式差分格式[J].华侨大学学报(自然科学版),1997,18(2):122.[doi:10.11830/ISSN.1000-5013.1997.02.0122]
 Zeng Wenping.Explicit Difference Scheme of High Accuracy for Solving Four Order Parabolic Equation[J].Journal of Huaqiao University(Natural Science),1997,18(2):122.[doi:10.11830/ISSN.1000-5013.1997.02.0122]
[5]曾文平.高阶抛物型方程恒稳的显式差分格式[J].华侨大学学报(自然科学版),1998,19(2):124.[doi:10.11830/ISSN.1000-5013.1998.02.0124]
 Zeng Wenping.Absolutely Stable Explicit Difference Scheme for Sloving Parabolic Equation of Higher Order[J].Journal of Huaqiao University(Natural Science),1998,19(2):124.[doi:10.11830/ISSN.1000-5013.1998.02.0124]
[6]曾文平.两类新的高稳定性的三层显式差分格式[J].华侨大学学报(自然科学版),1998,19(3):225.[doi:10.11830/ISSN.1000-5013.1998.03.0225]
 Zeng Wenping.Two New Classes of Three-Level Explicit Difference Schemes with Higher Stability[J].Journal of Huaqiao University(Natural Science),1998,19(2):225.[doi:10.11830/ISSN.1000-5013.1998.03.0225]
[7]曾文平,郑邵鹏.两类新的高稳定性的三层显式差分格式[J].华侨大学学报(自然科学版),1999,20(4):339.[doi:10.11830/ISSN.1000-5013.1999.04.0339]
 Zeng Wenping,Zheng Shaopeng.Two New Classes of Three-Level Explicit Difference Schemes with Higher Stability[J].Journal of Huaqiao University(Natural Science),1999,20(2):339.[doi:10.11830/ISSN.1000-5013.1999.04.0339]
[8]黄浪扬.四阶杆振动方程的tanh(x)辛格式[J].华侨大学学报(自然科学版),2002,23(3):217.[doi:10.3969/j.issn.1000-5013.2002.03.001]
 Huang Langyang.Symplectic Schemes of Four-Order Rod Vibration Equation via Function tanh(x)[J].Journal of Huaqiao University(Natural Science),2002,23(2):217.[doi:10.3969/j.issn.1000-5013.2002.03.001]
[9]黄浪扬.四阶杆振动方程的sinh(x)蛙跳辛格式[J].华侨大学学报(自然科学版),2003,24(2):125.[doi:10.3969/j.issn.1000-5013.2003.02.003]
 Huang Langyang.Leap-Frog Symplectic Scheme Constructed via Function sinh( x ) for the Rod Vibration Equation of Four Order[J].Journal of Huaqiao University(Natural Science),2003,24(2):125.[doi:10.3969/j.issn.1000-5013.2003.02.003]
[10]曾文平.解四阶杆振动方程新的两类隐式差分格式[J].华侨大学学报(自然科学版),2003,24(2):136.[doi:10.3969/j.issn.1000-5013.2003.02.005]
 Zeng Wenping.Two New Classes of Implicit Difference Schemes for Solving Rod Vibration Equation of Four Order[J].Journal of Huaqiao University(Natural Science),2003,24(2):136.[doi:10.3969/j.issn.1000-5013.2003.02.005]

更新日期/Last Update: 2014-03-23