参考文献/References:
[1] 秦元勋. 计算物理学 [M]. 成都:四川科学技术出版社, 1984.87-96.
[2] 李荣华, 冯果忱. 微分方程数值解 [M]. 北京:高等教育出版社, 1980.374-376.
[3] Khaliq A Q M, Twizell E H. A family of second order methods for variab le coefficient fourth order partial differential equations [J]. International Journal of Computer Mathematics, 1987.1-7.
[4] 南京大学数学系. 偏微分方程数值解法 [M]. 北京:科学出版社, 1979.92-93.
[5] 马驷良, 徐桢殷. 实系数数三、四次多项式是Von Neumann多项式的充要条件 [J]. 高等学校计算数学学报, 1984(3):274-280.
[6] 矢岛信男, 野术达夫. 发展方程の数值解析 [M]. 东京:日本岩波书店, 1977.46-232.
[7] 萨乌里耶夫 B K, 袁兆鼎. 抛物型方程的网格积分法 [M]. 北京:科学出版社, 1963.140-143.
相似文献/References:
[1]曾文平.解多维抛物型方程的两个显式格式[J].华侨大学学报(自然科学版),1983,4(2):1.[doi:10.11830/ISSN.1000-5013.1983.02.0001]
[2]曾文平.解三维抛物型方程的高精度显式格式[J].华侨大学学报(自然科学版),1995,16(2):128.[doi:10.11830/ISSN.1000-5013.1995.02.0128]
Zeng Wenping.High Accuracy Explicit Difference Schemes for Solving Three-Dimensional Equation of the Parabola[J].Journal of Huaqiao University(Natural Science),1995,16(2):128.[doi:10.11830/ISSN.1000-5013.1995.02.0128]
[3]曹文平.高阶发展方程的两类显式格式的稳定性分析[J].华侨大学学报(自然科学版),1996,17(3):231.[doi:10.11830/ISSN.1000-5013.1996.03.0231]
Zeng Wenping.Stability Analysis of Two Classes of Explicit DifferenceSchemes for High-Order Evolution Equations[J].Journal of Huaqiao University(Natural Science),1996,17(2):231.[doi:10.11830/ISSN.1000-5013.1996.03.0231]
[4]曾文平.解四阶抛物型方程的高精度显式差分格式[J].华侨大学学报(自然科学版),1997,18(2):122.[doi:10.11830/ISSN.1000-5013.1997.02.0122]
Zeng Wenping.Explicit Difference Scheme of High Accuracy for Solving Four Order Parabolic Equation[J].Journal of Huaqiao University(Natural Science),1997,18(2):122.[doi:10.11830/ISSN.1000-5013.1997.02.0122]
[5]曾文平.高阶抛物型方程恒稳的显式差分格式[J].华侨大学学报(自然科学版),1998,19(2):124.[doi:10.11830/ISSN.1000-5013.1998.02.0124]
Zeng Wenping.Absolutely Stable Explicit Difference Scheme for Sloving Parabolic Equation of Higher Order[J].Journal of Huaqiao University(Natural Science),1998,19(2):124.[doi:10.11830/ISSN.1000-5013.1998.02.0124]
[6]曾文平.两类新的高稳定性的三层显式差分格式[J].华侨大学学报(自然科学版),1998,19(3):225.[doi:10.11830/ISSN.1000-5013.1998.03.0225]
Zeng Wenping.Two New Classes of Three-Level Explicit Difference Schemes with Higher Stability[J].Journal of Huaqiao University(Natural Science),1998,19(2):225.[doi:10.11830/ISSN.1000-5013.1998.03.0225]
[7]曾文平,郑邵鹏.两类新的高稳定性的三层显式差分格式[J].华侨大学学报(自然科学版),1999,20(4):339.[doi:10.11830/ISSN.1000-5013.1999.04.0339]
Zeng Wenping,Zheng Shaopeng.Two New Classes of Three-Level Explicit Difference Schemes with Higher Stability[J].Journal of Huaqiao University(Natural Science),1999,20(2):339.[doi:10.11830/ISSN.1000-5013.1999.04.0339]
[8]黄浪扬.四阶杆振动方程的tanh(x)辛格式[J].华侨大学学报(自然科学版),2002,23(3):217.[doi:10.3969/j.issn.1000-5013.2002.03.001]
Huang Langyang.Symplectic Schemes of Four-Order Rod Vibration Equation via Function tanh(x)[J].Journal of Huaqiao University(Natural Science),2002,23(2):217.[doi:10.3969/j.issn.1000-5013.2002.03.001]
[9]黄浪扬.四阶杆振动方程的sinh(x)蛙跳辛格式[J].华侨大学学报(自然科学版),2003,24(2):125.[doi:10.3969/j.issn.1000-5013.2003.02.003]
Huang Langyang.Leap-Frog Symplectic Scheme Constructed via Function sinh( x ) for the Rod Vibration Equation of Four Order[J].Journal of Huaqiao University(Natural Science),2003,24(2):125.[doi:10.3969/j.issn.1000-5013.2003.02.003]
[10]曾文平.解四阶杆振动方程新的两类隐式差分格式[J].华侨大学学报(自然科学版),2003,24(2):136.[doi:10.3969/j.issn.1000-5013.2003.02.005]
Zeng Wenping.Two New Classes of Implicit Difference Schemes for Solving Rod Vibration Equation of Four Order[J].Journal of Huaqiao University(Natural Science),2003,24(2):136.[doi:10.3969/j.issn.1000-5013.2003.02.005]