[1]曾文平.二维抛物型方程精细积分法与差分法比较[J].华侨大学学报(自然科学版),2002,23(1):5-11.[doi:10.3969/j.issn.1000-5013.2002.01.002]
 Zeng Wengping.Comparison between Meticulous Integration and Difference Method for Solving Two-Dimensional Parabolic Equation[J].Journal of Huaqiao University(Natural Science),2002,23(1):5-11.[doi:10.3969/j.issn.1000-5013.2002.01.002]
点击复制

二维抛物型方程精细积分法与差分法比较()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第23卷
期数:
2002年第1期
页码:
5-11
栏目:
出版日期:
2002-01-20

文章信息/Info

Title:
Comparison between Meticulous Integration and Difference Method for Solving Two-Dimensional Parabolic Equation
文章编号:
1000-5013(2002)01-0005-07
作者:
曾文平
华侨大学数学系 泉州362011
Author(s):
Zeng Wengping
Dept. of Math., Huaqiao Univ., 362011, Quanzhou
关键词:
二维抛物型方程 初值问题 偏微分方程数值解 精细积分法
Keywords:
two-dimensional parabolic equation initial-value problem numerical solution to partial differential equation meticulous integration
分类号:
O241.82
DOI:
10.3969/j.issn.1000-5013.2002.01.002
文献标志码:
A
摘要:
可用单内点子域精细积分法,求解二维抛物型方程初值问题 .当单内点精细积分中的传递函数即指数函数用 Taylor展开式的一阶近似来替代时,精细积分转化为差分方程 .研究这一对应关系,使各种常见差分格式均找到对应的单点精细积分格式,并在单点精细积分的一般公式中获得统一表达式
Abstract:
The initial-value problem of two-dimensional parabolic equation can be solved by using meticulous integration of single inner point subdomain. The meticulous integration is turned into difference equation in case transfer function, i.e. exponential function in meticulous integration of single inner point is replaced by Taylor expansion. This correspondence is studied, and each common difference scheme finds its corresponding meticulous integration of single point, and the unified expression is obtained in the general formula for meticulous integration of single point.

相似文献/References:

[1]林龙威.论均熵流气体动力学方程组的真空状态[J].华侨大学学报(自然科学版),1984,5(2):1.[doi:10.11830/ISSN.1000-5013.1984.02.0001]
[2]梁敏.带耗散的气体动力学方程组的广义解存在性定理[J].华侨大学学报(自然科学版),1985,6(4):376.[doi:10.11830/ISSN.1000-5013.1985.04.0376]
 Liang Min.The Existent Theorems of Generalized Solutions for the Systems of Gas Dynamics with Dissipation[J].Journal of Huaqiao University(Natural Science),1985,6(1):376.[doi:10.11830/ISSN.1000-5013.1985.04.0376]
[3]曾文平.解二维抛物型方程的恒稳高精度格式[J].华侨大学学报(自然科学版),1999,20(1):18.[doi:10.11830/ISSN.1000-5013.1999.01.0018]
 Zeng Wenping.A Family of Steady and High Accurate Difference Schemes for Solving Two Dimensional Equations of Parabolic Type[J].Journal of Huaqiao University(Natural Science),1999,20(1):18.[doi:10.11830/ISSN.1000-5013.1999.01.0018]
[4]单双荣.二维抛物型方程的高稳定性两层显式格式[J].华侨大学学报(自然科学版),2008,29(4):622.[doi:10.11830/ISSN.1000-5013.2008.04.0622]
 SHAN Shuang-rong.Two-Level Explicit Difference Schemes with Higher Stability Properties for Solving the Equation of Two-Dimensional Parabolic Type[J].Journal of Huaqiao University(Natural Science),2008,29(1):622.[doi:10.11830/ISSN.1000-5013.2008.04.0622]

备注/Memo

备注/Memo:
福建省自然科学基金资助项目
更新日期/Last Update: 2014-03-23