[1]冯平.具有滞环的非线性非自治电路唯一稳态[J].华侨大学学报(自然科学版),2001,22(4):428-431.[doi:10.3969/j.issn.1000-5013.2001.04.021]
 Feng Ping.A Study on the Uniquely Steady State of Nonlinear and Nonautonomous Circuits with Hysteresis Loop[J].Journal of Huaqiao University(Natural Science),2001,22(4):428-431.[doi:10.3969/j.issn.1000-5013.2001.04.021]
点击复制

具有滞环的非线性非自治电路唯一稳态()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第22卷
期数:
2001年第4期
页码:
428-431
栏目:
出版日期:
2001-10-20

文章信息/Info

Title:
A Study on the Uniquely Steady State of Nonlinear and Nonautonomous Circuits with Hysteresis Loop
文章编号:
1000-5013(2001)04-0428-04
作者:
冯平
解放军后勤工程学院自动化工程系 重庆400016
Author(s):
Feng Ping
Dept. of Automation Eng., College of PLA Logistic Eng., 400016, Chongqing
关键词:
非线性电路 唯一稳态 滞环多值系统
Keywords:
monlinear circuit uniquely steady state hysteresis multivalue system
分类号:
TM132
DOI:
10.3969/j.issn.1000-5013.2001.04.021
文献标志码:
A
摘要:
利用向量比较原理,得到确定具有滞环的非线性非自治电路的唯一稳态条件 .结果表明,具有滞环的非线性非自治电路的唯一稳态,可以用一个常数矩阵的 HURWITZ条件来决定,其结果扩展已有的经典结果 .
Abstract:
With regard to the nonlinear and nonautonomons circuits with hysteresis loop, the author obtains the condition determing their uniquely steady state. As shown by the author’s results, the uniquely steady state of nonlinear and nonautonomous circuits with hysteresis loop can be determined by applying HURWITZ condition of one constant matrix. The present work has extended the classical results now available.

参考文献/References:

[1] Hasler M, Verburgh P. Uniqueness of the steady state for small source amplitudes in nonlinear nonautonomous circuits [J]. International Journal of Circuit theory and Applications, 1985.3-17.
[2] Hasler M, Verburgh P. On the uniqueness of the steady state for nonlinear circuits with timedependent sources [J]. IEEE Transactions on Circuits and Systems, 1984.702-713.
[3] Chua L O, Stromsmoe K A. Lumped circuit models for nonlinear inductors exhibiting hysteresis loops [J]. IEEE Transactions on CT, 1970(4):564-574.doi:10.1109/TCT.1970.1083192.
[4] Mack J W, Nistri P, Zecca P. Mathematical model for hysteresis [J]. SIAM Review, 1993(1):94-123.
[5] 尤秉礼. 常微分方程补充教程 [M]. 北京:人民教育出版社, 1981.34-50.

备注/Memo

备注/Memo:
解放军后勤工程学院科研基金资助项目
更新日期/Last Update: 2014-03-23