参考文献/References:
[1] John F. Formation of singularities in one-dimensional nonlinear wave propagation [J]. Communications on Pure and Applied Mathematics, 1974.377-405.doi:10.1002/cpa.3160270307.
[2] Hrmander L. The life span of classical solutions of nonlinear hyperbolic equations [J]. Institute Mittag-Leffer, 1985(5):87-96.
[3] Liu Taiping. Development of singularities in the nonlinear waves for quasi-linear hyperbolic partial differe-ntial equations [J]. Journal of Differential Equations, 1979.92-111.
[4] Li Tatsien, Zhou Yi, Kong Dexing. Weak linear degene racy and global classical solutions for general quasilinear hyperbolic systems [J]. Communications in Partial Differential Equations, 1994.1263-1317.doi:10.1080/03605309408821055.
[5] Li Tatsien, zhou Yi, Kong Dexing. Global classical solutions for general quasilinear hyperbolic systems with decay initial data [J]. Nonlinear Analysis-Theory Methods and Applications, 1997(8):1299-1332.
[6] 孔德兴. 对角型拟线性双曲组经典解的奇性形成及其生命区间 [J]. 河南大学学报(自然科学版), 1993(2):7-11.
[7] 李大潜, 俞文. 一阶拟线性双曲型方程组的柯西问题 [J]. 数学进展, 1963(2):152-171.
[8] Zheng Yongshu, Liu Fagui. A necessary and sufficient condition for global existence of classical solutions to Cauchy porblem of quasilinear hyperbolic systems in diagonal form [J]. ACTA MATHEMATICA SCIENTIA, 2000(4):571-576.
相似文献/References:
[1]伍锦棠,郑永树.带非线性松弛项的半线性双曲组的整体光滑解[J].华侨大学学报(自然科学版),2003,24(2):131.[doi:10.3969/j.issn.1000-5013.2003.02.004]
Wu Jintang,Zheng Yongshu.Globally Smooth Solution to a Semi-Linear Hyperbolic System with a Nonlinear Relaxation Term[J].Journal of Huaqiao University(Natural Science),2003,24(4):131.[doi:10.3969/j.issn.1000-5013.2003.02.004]