[1]曾文平.具耗散项二阶双曲型方程分组显式方法[J].华侨大学学报(自然科学版),2001,22(3):237-241.[doi:10.3969/j.issn.1000-5013.2001.03.004]
 Zeng Wenping.Grouping Explicit Method for Solving Second -Order Hyperbolic Equation with Term of Dissipation[J].Journal of Huaqiao University(Natural Science),2001,22(3):237-241.[doi:10.3969/j.issn.1000-5013.2001.03.004]
点击复制

具耗散项二阶双曲型方程分组显式方法()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第22卷
期数:
2001年第3期
页码:
237-241
栏目:
出版日期:
2001-07-20

文章信息/Info

Title:
Grouping Explicit Method for Solving Second -Order Hyperbolic Equation with Term of Dissipation
文章编号:
1000-5013(2001)03-0237-05
作者:
曾文平
华侨大学经济管理学院, 泉州362011
Author(s):
Zeng Wenping
College of Econ. Manag., Huaqiao Univ., 362011, Quanzhou
关键词:
二阶双曲型方程 耗散项 分组显式方法 稳定性
Keywords:
second order hyperbolic equation term of dissipation grouping explicit method stability
分类号:
O241.82
DOI:
10.3969/j.issn.1000-5013.2001.03.004
摘要:
首先把具耗散项的二阶双曲型方程分解为两个一阶方程,然后利用不对称公式提出解此类二阶双曲型方程的分组显式方法 .进而,证明交替分组显式方法是无条件稳定的 .数值试验表明,这些新方法是令人满意的
Abstract:
A second order hyperbolic equation with term of dissipation is decomposed into two first order equations as the first step. For solving this kind of second order hyperbolic equations, the grouping explicit method is presented by applying asymmetric formula. And then, the alternatively grouping explicit method is proved to be unconditionally stable. As shown by numerical experiment, these new methods are satisfactory.

参考文献/References:

[1] СаульевВК, 袁兆鼎. 抛物型方程的网格积分法 [M]. 北京:科学出版社, 1961.221-284.
[2] EVANS D J, Abdullah A R B. Group explicit method for parabolic equation [J]. International Journal of Computer Mathematics, 1983.73-105.
[3] Abdullah A R B, Evans D J. A new strategy for solving second-order hyperbolic equations using asymmetric formulac [J]. Computers & Mathematics with Applications, 1987(9):831-838.
[4] 张宝琳, 袁国兴, 刘兴平. 偏微分方程并行有限差分方法 [M]. 北京:科学出版社, 1994.85-222.

相似文献/References:

[1]郑永树,连碧龙.欧拉坐标的气动力学方程组的整体光滑解[J].华侨大学学报(自然科学版),2000,21(4):337.[doi:10.3969/j.issn.1000-5013.2000.04.002]
 Zheng Yongshu,Lian Bilong.A Globally Smooth Solution of Aerodynamic Equation Set in Eulerian Coordinate[J].Journal of Huaqiao University(Natural Science),2000,21(3):337.[doi:10.3969/j.issn.1000-5013.2000.04.002]
[2]金相华,曾文平.解四阶抛物型方程的若干新的差分格式[J].华侨大学学报(自然科学版),2006,27(3):238.[doi:10.3969/j.issn.1000-5013.2006.03.004]
 Jin Xianghua,Zeng Wenping.Several New Difference Schemes for Solving Fourth Order Parabolic Equation[J].Journal of Huaqiao University(Natural Science),2006,27(3):238.[doi:10.3969/j.issn.1000-5013.2006.03.004]
[3]单双荣.二维抛物型方程的高稳定性两层显式格式[J].华侨大学学报(自然科学版),2008,29(4):622.[doi:10.11830/ISSN.1000-5013.2008.04.0622]
 SHAN Shuang-rong.Two-Level Explicit Difference Schemes with Higher Stability Properties for Solving the Equation of Two-Dimensional Parabolic Type[J].Journal of Huaqiao University(Natural Science),2008,29(3):622.[doi:10.11830/ISSN.1000-5013.2008.04.0622]
[4]徐金平,单双荣.解抛物型方程的一个高精度显式差分格式[J].华侨大学学报(自然科学版),2009,30(4):473.[doi:10.11830/ISSN.1000-5013.2009.04.0473]
 XU Jin-ping,SHAN Shuang-rong.An Explicit Difference Scheme with High-Order Accuracy for Solving Parabolic Equation[J].Journal of Huaqiao University(Natural Science),2009,30(3):473.[doi:10.11830/ISSN.1000-5013.2009.04.0473]

更新日期/Last Update: 2014-03-23