[1]黄浪扬,曾文平.抛物型方程的一族高精度恒稳格式[J].华侨大学学报(自然科学版),2000,21(2):124-128.[doi:10.3969/j.issn.1000-5013.2000.02.004]
 Huang langyang,Zeng Wenping.A Group of Steady Difference Schemes wth High Accuracy for Solving Parabolic Equation[J].Journal of Huaqiao University(Natural Science),2000,21(2):124-128.[doi:10.3969/j.issn.1000-5013.2000.02.004]
点击复制

抛物型方程的一族高精度恒稳格式()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第21卷
期数:
2000年第2期
页码:
124-128
栏目:
出版日期:
2000-04-20

文章信息/Info

Title:
A Group of Steady Difference Schemes wth High Accuracy for Solving Parabolic Equation
文章编号:
1000-5013(2000)02-0124-05
作者:
黄浪扬曾文平
华侨大学管理信息科学系, 泉州362011
Author(s):
Huang langyang Zeng Wenping
Dept. of Manag. Info. Sci., Huaqiao Univ., 362011, Quanzhou
关键词:
二阶抛物型方程 绝对稳定 高精度 隐式差分格式
Keywords:
second order parabolic equation absolutely stable high accuracy implicit difference scheme
分类号:
O241.82
DOI:
10.3969/j.issn.1000-5013.2000.02.004
摘要:
对二阶抛物型方程 ut=uxx,构造了一族新的三层隐式差分格式 (在特殊情况下是两层 ) .它们含有非负参数α1,α2 和α3,其截断误差至少可达 O((Δt) 2 +(Δx) 4 ) .对三层格式,在条件α1 ≥α2 ≥0,α2 ≤ 12 及α1 +α2 +α3 =1之下绝对稳定 .特别地,在条件α1 =0,α2 =α3 或α1 =α2,α3 =0之下成为两层不含参数的隐式格式,且也是绝对稳定的 .这些格式均可用追赶法求解 .在该格式中,选取适当的参数,可得抛物型方程初边值差分格式中的高精度格式 .
Abstract:
A new group of three layer implicit differemce schemes, which can be two layer in special case, are constructed for solving second order parabolic equation where u t=u xx . They contain non negative parameter α 1, α 2 and α 3, with truncation error up to O ((Δ t ) 2+(Δ x ) 4) at least. Under the conditions of α 1≥ α 3≥0, α 2≤12 and α 1+ α 2+ α 3=1, these three layer schemes are absolutely stable. Under the conditions of α 1=0, α 2= α 3 or α 1= α 2, α 3=0 as a special case, they become two layer but remain absolutely stable. All these schemes can be solved by double sweeping method. By choosing proper parameter, highly accurate schemes in difference schemes with initial boundary value can be obtained for solving parabolic equation.

参考文献/References:

[1] Lancaster P, 袁国兴. 初值问题的差分方法 [M]. 广州:中山大学出版社, 1992.59-91, 187-189.
[2] 陈传淡, 林群. 一族绝对稳定的差分格式 [J]. 厦门大学学报(自然科学版), 1983(3):275-279.
[3] 周顺兴. 解抛物型偏微分方程的高精度差分格式 [J]. 计算数学, 1982(2):204-213.
[4] 金承日. 解抛物型方程的高精度显式格式 [J]. 计算数学, 1991(1):38-44.
[5] 曾文平. 解四阶抛物型方程的高精度恒稳的隐式格式 [J]. 华侨大学学报(自然科学版), 1996(4):331-335.

相似文献/References:

[1]曾文平.解多维抛物型方程的两个显式格式[J].华侨大学学报(自然科学版),1983,4(2):1.[doi:10.11830/ISSN.1000-5013.1983.02.0001]
[2]苏远生.色散方程ut=auxxx的两个半显式绝对稳定差分格式[J].华侨大学学报(自然科学版),1989,10(2):110.[doi:10.11830/ISSN.1000-5013.1989.02.0110]
 Su Yuansheng.Two Absolutely Stable Semi-Explict Difference Schemes for Dispersion Equation ut=auxxx[J].Journal of Huaqiao University(Natural Science),1989,10(2):110.[doi:10.11830/ISSN.1000-5013.1989.02.0110]
[3]曾文平.两类含参数高精度恒稳的半显式差分格式[J].华侨大学学报(自然科学版),1993,14(2):133.[doi:10.11830/ISSN.1000-5013.1993.02.0133]
 Zeng Wenping.Two Classes of Absolutely Stable and High Accuracy Difference Schemes Depending on a Parameter[J].Journal of Huaqiao University(Natural Science),1993,14(2):133.[doi:10.11830/ISSN.1000-5013.1993.02.0133]
[4]曾文平.一族绝对稳定的高精度差分格式[J].华侨大学学报(自然科学版),1994,15(3):257.[doi:10.11830/ISSN.1000-5013.1994.03.0257]
 Zeng Wenping.A Family of Absolutely Stable and High Accurate Difference Schemes[J].Journal of Huaqiao University(Natural Science),1994,15(2):257.[doi:10.11830/ISSN.1000-5013.1994.03.0257]
[5]曾文平.解四阶抛物型方程高精度恒稳的隐式格式[J].华侨大学学报(自然科学版),1996,17(4):331.[doi:10.11830/ISSN.1000-5013.1996.04.0331]
 Zeng Wenping.A Class of High Accurate and Absolutely Stable Implicit Difference Schemes for Solving Four Order Parabolic Equations[J].Journal of Huaqiao University(Natural Science),1996,17(2):331.[doi:10.11830/ISSN.1000-5013.1996.04.0331]
[6]曾文平.对流方程的一类新的恒稳差分格式[J].华侨大学学报(自然科学版),1997,18(3):225.[doi:10.11830/ISSN.1000-5013.1997.03.0225]
 Zeng Wenping.A Class of New Steady Difference Schemes for Convective Equation[J].Journal of Huaqiao University(Natural Science),1997,18(2):225.[doi:10.11830/ISSN.1000-5013.1997.03.0225]
[7]曾文平.高阶抛物型方程恒稳的显式差分格式[J].华侨大学学报(自然科学版),1998,19(2):124.[doi:10.11830/ISSN.1000-5013.1998.02.0124]
 Zeng Wenping.Absolutely Stable Explicit Difference Scheme for Sloving Parabolic Equation of Higher Order[J].Journal of Huaqiao University(Natural Science),1998,19(2):124.[doi:10.11830/ISSN.1000-5013.1998.02.0124]
[8]曾文平.解二维抛物型方程的恒稳高精度格式[J].华侨大学学报(自然科学版),1999,20(1):18.[doi:10.11830/ISSN.1000-5013.1999.01.0018]
 Zeng Wenping.A Family of Steady and High Accurate Difference Schemes for Solving Two Dimensional Equations of Parabolic Type[J].Journal of Huaqiao University(Natural Science),1999,20(2):18.[doi:10.11830/ISSN.1000-5013.1999.01.0018]
[9]陈世平,曾文平.对流方程的一族高精度恒稳格式[J].华侨大学学报(自然科学版),2001,22(2):122.[doi:10.3969/j.issn.1000-5013.2001.02.003]
 Chen Shiping,Zeng Wenping.A Group of Steady Schemes with High Accuracy for Solving Convective Equation[J].Journal of Huaqiao University(Natural Science),2001,22(2):122.[doi:10.3969/j.issn.1000-5013.2001.02.003]
[10]曾文平.抛物型方程的一族双参数高精度恒稳格式[J].华侨大学学报(自然科学版),2002,23(4):327.[doi:10.3969/j.issn.1000-5013.2002.04.001]
[11]张星,单双荣.解二阶抛物型方程的一族高精度恒稳格式[J].华侨大学学报(自然科学版),2009,30(2):229.[doi:10.11830/ISSN.1000-5013.2009.02.0229]
 ZHANG Xing,SHAN Shuang-rong.A Group of Steady Difference Schemes with High Accuracy for Solving Two-Order Parabolic Equation[J].Journal of Huaqiao University(Natural Science),2009,30(2):229.[doi:10.11830/ISSN.1000-5013.2009.02.0229]

更新日期/Last Update: 2014-03-23