[1]刘金雄.Reich的一个定理改进及其相关问题[J].华侨大学学报(自然科学版),2000,21(1):8-10.[doi:10.3969/j.issn.1000-5013.2000.01.002]
 Liu Jinxiong.Improving One of Reich’s Theorems and Problem Correlated with It[J].Journal of Huaqiao University(Natural Science),2000,21(1):8-10.[doi:10.3969/j.issn.1000-5013.2000.01.002]
点击复制

Reich的一个定理改进及其相关问题()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第21卷
期数:
2000年第1期
页码:
8-10
栏目:
出版日期:
2000-01-20

文章信息/Info

Title:
Improving One of Reich’s Theorems and Problem Correlated with It
文章编号:
1000-5013(2000)01-0008-03
作者:
刘金雄
华侨大学管理信息科学系, 泉州362011
Author(s):
Liu Jinxiong
Dept. of Manag. Info. Sci., Huaqiao Univ., 362011, Quanzhou
关键词:
拟共形映照 唯一极值映照 Teichmüller映照
Keywords:
quasiconformal mapping uniquely extremal mapping Teichmüeller mapping
分类号:
O174.55
DOI:
10.3969/j.issn.1000-5013.2000.01.002
摘要:
设 f为关于φ0 的 Teichmüller映照,若存在函数列 {φn} β(Ω ),使得 limn→∞ φn(z) =φ0 (z),a.e.,limn→∞ Ω[k|φn|- Re(κfφn) ]dxdy=0,其中 κf 为 f 的复特征,Reich证明 f 是唯一极值映照 .在此基础上,证明去掉 f 为 Teichmüller映照这一假设,Reich的结论仍成立 .文中还得到在一定条件下,Reich这一结论的逆命题也成立 .
Abstract:
Assuming f to be Teichmüeller mapping of φ 0 .Reich proved that f is the uniquely extremal mapping if there exist function sequence {φ n}β(Ω) to make lim n→∞φ n(z)=φ 0(z),a.e., lim n→∞Ω[k|φ n|- Re (κ fφ n)] d x d y=0, where κ f is composite character of f . On this basis, the author proves that Reich’s conclusion can be established even if f is not assumed to be Teichmüller mapping; and that the inverse proposition of Reich’s conclusion can also be established under definite condition.

参考文献/References:

[1] Reich E. A criterion for unique extremality of Teichmüller mappings [J]. Indiana University Mathematics Journal, 1981, (30):441-447.
[2] Reich E. On criteria for unique extremality of Teichmüller meppings [J]. Annales Academic Scientiarum Fennicae Mathematica, 1981(6):289-301.
[3] 刘增荣. Reich的一个定理的改进 [J]. 华侨大学学报(自然科学版), 1989(1):1-5.

相似文献/References:

[1]赖万才.拟共形映照的模数偏差[J].华侨大学学报(自然科学版),1985,6(2):141.[doi:10.11830/ISSN.1000-5013.1985.02.0141]
 Lai Wancai.On the Distortion of Modulus of Quasiconformal Mappings[J].Journal of Huaqiao University(Natural Science),1985,6(1):141.[doi:10.11830/ISSN.1000-5013.1985.02.0141]
[2]刘增荣.Reich 的一个定理的改进[J].华侨大学学报(自然科学版),1989,10(1):1.[doi:10.11830/ISSN.1000-5013.1989.01.0001]
 Liu Zengrong.Improvement of a Theorem by Reich[J].Journal of Huaqiao University(Natural Science),1989,10(1):1.[doi:10.11830/ISSN.1000-5013.1989.01.0001]
[3]赖万才.拟共形映照的一个极值问题[J].华侨大学学报(自然科学版),1989,10(4):359.[doi:10.11830/ISSN.1000-5013.1989.04.0359]
 Lai Wancai.An Extremal Problem for Quasiconformal Mappings[J].Journal of Huaqiao University(Natural Science),1989,10(1):359.[doi:10.11830/ISSN.1000-5013.1989.04.0359]
[4]黄心中.参数表示下的拟共形映照[J].华侨大学学报(自然科学版),1997,18(2):111.[doi:10.11830/ISSN.1000-5013.1997.02.0111]
 Huang Xinzhong.Quasiconformal Mappings with Parametric Representation[J].Journal of Huaqiao University(Natural Science),1997,18(1):111.[doi:10.11830/ISSN.1000-5013.1997.02.0111]
[5]黄心中.分段与整体拟对称函数之间的关系[J].华侨大学学报(自然科学版),1999,20(1):1.[doi:10.11830/ISSN.1000-5013.1999.01.0001]
 Huang Xinzhong.Relation between Piecewise and Global Quasi Symmetric Functions[J].Journal of Huaqiao University(Natural Science),1999,20(1):1.[doi:10.11830/ISSN.1000-5013.1999.01.0001]
[6]陈行堤,黄心中.拟共形映照的爆破集问题[J].华侨大学学报(自然科学版),2001,22(2):111.[doi:10.3969/j.issn.1000-5013.2001.02.001]
 Chen Xingdi,Huang Xinzhong.Explodable Set of Quasiconformal Mapping[J].Journal of Huaqiao University(Natural Science),2001,22(1):111.[doi:10.3969/j.issn.1000-5013.2001.02.001]
[7]林峰.Beurling-Ahlfors扩张的伸张函数的边界极限[J].华侨大学学报(自然科学版),2004,25(4):352.[doi:10.3969/j.issn.1000-5013.2004.04.004]
 Lin Feng.Boundary Limit of Dilatation Function of Beurling-Ahlfors Extension[J].Journal of Huaqiao University(Natural Science),2004,25(1):352.[doi:10.3969/j.issn.1000-5013.2004.04.004]
[8]朱剑锋,黄心中.区间上拟对称函数的延拓定理[J].华侨大学学报(自然科学版),2007,28(1):83.[doi:10.3969/j.issn.1000-5013.2007.01.022]
 ZHU Jian-feng,HUANG Xin-zhong.The Extension Theorem of Quasisymmetric Function on the Interval[J].Journal of Huaqiao University(Natural Science),2007,28(1):83.[doi:10.3969/j.issn.1000-5013.2007.01.022]
[9]韩雪,黄心中.拟共形映照的双曲面积偏差[J].华侨大学学报(自然科学版),2007,28(4):433.[doi:10.3969/j.issn.1000-5013.2007.04.026]
 HAN Xue,HUANG Xin-zhong.Hyperbolic Area Distortion under Quasiconformal Mappings[J].Journal of Huaqiao University(Natural Science),2007,28(1):433.[doi:10.3969/j.issn.1000-5013.2007.04.026]
[10]吴瑞溢,黄心中.Salagean类单叶调和函数的特征[J].华侨大学学报(自然科学版),2008,29(2):308.[doi:10.11830/ISSN.1000-5013.2008.02.0308]
 WU Rui-yi,HUANG Xin-zhong.The Characteristic of Salagean-Type Univalent Harmonic Functions[J].Journal of Huaqiao University(Natural Science),2008,29(1):308.[doi:10.11830/ISSN.1000-5013.2008.02.0308]
[11]刘金雄.一类唯一极值Teichmǖller映照的判别法[J].华侨大学学报(自然科学版),2000,21(4):331.[doi:10.3969/j.issn.1000-5013.2000.04.001]
 Liu Jinxiong.Criterion for a Class of Uniquely Extremal Teichmüller Mappings[J].Journal of Huaqiao University(Natural Science),2000,21(1):331.[doi:10.3969/j.issn.1000-5013.2000.04.001]
[12]刘金雄.一类唯一极值Teichmller映照的存在性[J].华侨大学学报(自然科学版),2001,22(1):6.[doi:10.3969/j.issn.1000-5013.2001.01.002]
 Liu Jinxiong.Existence of a Class of Uniquely Extremal Teichmller Mappings[J].Journal of Huaqiao University(Natural Science),2001,22(1):6.[doi:10.3969/j.issn.1000-5013.2001.01.002]

备注/Memo

备注/Memo:
福建省自然科学基金资助项目
更新日期/Last Update: 2014-03-23