Ian. 2000

文章编号 1000-5013(2000)01-0008-03

Reich 的一个定理改进及其相关问题

刘金雄

(华侨大学管理信息科学系, 泉州 362011)

摘要 设f 为关于 \mathfrak{P}_n 的 Teichmüller 映照, 若存在函数列 $\{\mathfrak{P}_n\}\subset \beta(\Omega)$, 使得 $\lim \mathfrak{P}_n(z)=\mathfrak{P}_n(z)$, $a.\ e.$

 $\lim_n \iint [k|\mathcal{Q}_n] - \operatorname{Re}(\kappa_f \mathcal{Q}_n)] \, \mathrm{d}x \, \mathrm{d}y = 0, \\ \text{其中 } \kappa_f \text{ 为 } f \text{ 的复特征}, \\ \operatorname{Reich} \text{ 证明 } f \text{ 是唯一极值映照 }.\text{ 在此基}$

础上,证明去掉f为 Teichmüller 映照这一假设,Reich 的结论仍成立。文中还得到在一定条件下,Reich 这一结论的逆命题也成立。

关键词 拟共形映照,唯一极值映照,Teichmüller 映照

中图分类号 0 174.55

文献标识码 A

记 Ω 是复平面 \mathbb{C} 上边界多于一点的一个区域, f 为 Ω 上的一个拟共形映照. Q_f 表示 Ω 上与 f 有相同边界值, 且同伦的拟共形映照全体所组成的类. 对任一 g Q_f , 置

$$\mathcal{K}_{\mathcal{E}}(z) = g\overline{z}/gz, \qquad \mathcal{K}_{\mathcal{E}} = \operatorname{ess sup} |\mathcal{K}_{\mathcal{E}}(z)|.$$

f 是极值的, 意指 $\kappa_f = \inf_{g = 0} \kappa_g$. 若这样的 f 是唯一的, 则 f 是唯一极值映照.

若拟共形映照的复特征形式为

$$\kappa_f(z) = f_{\bar{z}}/f_z = k\mathcal{P}/|\mathcal{P}|, a.e.,$$

其中 k 为常数, 0 k < 1, 90 0, $a \cdot e \cdot \cdot$ 则当 90 为 Ω 上的可测函数时, $n \cdot f$ 为关于 90 的 Teichmüller 映照; 当 90 在 Ω 上解析时, $n \cdot f$ 为关于 $n \cdot g$ 的正则 Teichmüller 映照.

 $\beta(\Omega)$ 表示 $L^1(\Omega)$ 中的解析函数的全体所成的 Banach 空间, φ $\beta(\Omega)$, 其范数

$$\varphi = \iint \varphi(z) | dx dy < .$$

对于 φ $\beta(\Omega)$,记

$$\delta(\kappa_y, \mathcal{P}) = k \quad \mathcal{P} - \operatorname{Re} \int \kappa_y \mathcal{P} dx \, dy, \qquad (1)$$

其中 $k=\kappa$

定理 $\mathbf{A}^{(1)}$ 设 f 为关于 \mathcal{Q} 的 T eichmüller 映照, 若存在函数列 $\{\mathcal{Q}\}\subset\mathcal{B}(\Omega)$, 使

$$\lim_{z \to 0} \mathcal{Q}(z) = \mathcal{Q}(z), \ a. e., \tag{2}$$

$$\lim \delta\{ \, \mathcal{K}_{f} \,, \, \mathcal{Q}_{f} \} = 0, \tag{3}$$

则f 是唯一极值映照.

定理**B**[©] 设 f 为关于 \mathcal{Q} 的 Teichmüller 映照, 若存在函数列{ \mathcal{Q} }, 满足

$$\lim_{n} \mathcal{Q}_{n}(z) = \mathcal{Q}(z), \quad a. \ e. \quad z \quad \Omega, \quad \mathcal{Q} \quad L^{1}_{bc}(\Omega), \tag{4}$$

$$\delta\{\kappa, \mathcal{Q}\} \qquad M, \quad n = 1, 2, ..., \tag{5}$$

$$\lim_{A} \iiint \mathcal{Q}(z) | dx dy = 0, \tag{6}$$

$$\lim_{A} \iint_{\Omega(X)} |\mathcal{Q}(z)| \, \mathrm{d}x \, \mathrm{d}y = 0, \tag{6}$$

此式对 n 一致, 其中 $\Omega(n,A) = \{z \quad \Omega \mid \mathcal{Q}(z) \mid > A \mid \mathcal{Q}(z) \mid \}$, 则 f 是唯一极值映照.

定理 $\mathbb{C}^{\mathfrak{g}_1}$ 设f 为关于 \mathfrak{A} 的 Teichmüller 映照, 若存在函数列{ \mathfrak{A} } $\subset \beta(\mathfrak{Q})$, 满足式(4), (5) 和

$$\lim_{A} \iint_{\Omega} [k| \mathcal{Q}_{A} - \operatorname{Re}(\kappa_{f} \mathcal{Q}_{A})] dx dy = 0.$$
 (7)

此式对 n 一致, 其中 $\Omega(n,A)$ 与式 (6) 中的相同, 则 f 唯一极值映照.

本文证明, 定理 A 在不假定 f 为 Teichmüller 映照的情况下, 结论仍成立. 我们有

定理 1 设 f 为 Ω 上的一个拟共形映照, $\kappa = k$ 若存在函数列 $\{Q\} \subset \beta(\Omega)$,满足条

件(2),(3),其中 \mathcal{Q} 0,,a.e.则 $\kappa(z) = k\mathcal{Q}/|\mathcal{Q}|$,a.e.,且f(z)是唯一极值映照. 文 0 中提出定理 A 的逆是否为真这一问题,本文证明,在较强的条件下,定理 A 的逆是

成立的,我们有

定理 2 设 $\kappa = k \mathcal{P}/|\mathcal{P}|$, κ 满足条件(2)和(7),且 $\iint \mathcal{P}| dx dy <$,则 κ 满足条件(3).

定理1的证明 1

定理1要证明的只是第一部分的结论.

由于 $k|\mathcal{Q}(z)| - \text{Re}(\kappa(z)\mathcal{Q}(z))$ 0, 故由 Fatou 引理, 我们有

 $\iint_{n} \left[k \middle| \mathcal{Q}(z) \middle| - \operatorname{Re}(\mathcal{K}(z) \mathcal{Q}(z)) \right] dx dy \quad \lim_{n} \iint_{n} \left[k \middle| \mathcal{Q}(z) \middle| - \operatorname{Re}(\mathcal{K}(z) \mathcal{Q}(z)) \right] dx dy,$

注意到条件(2)和(3),便有

$$\iint [k|\mathcal{Q}(z)| - \operatorname{Re}(\mathcal{K}(z)\mathcal{Q}(z))] dx dy = 0.$$

因为 $k | \mathcal{Q}(z) |$ - Re $(\kappa(z)\mathcal{Q}(z))$ 0, 从而 $k | \mathcal{Q}(z) |$ - Re $(\kappa(z)\mathcal{Q}(z))$ = 0, a.e., 于是, $k | \mathcal{Q}(z) |$ $|z| - \kappa(z) \varphi(z) = 0, a \cdot e \cdot$. $\exists \kappa = \kappa \varphi / |\varphi|, a \cdot e \cdot$, $\varepsilon = 1$ 证毕.

定理2的证明

置

$$F_n(z) = \begin{cases} 0 & z & \Omega(n, A), \\ k \mid \mathcal{Q}_n \mid - \operatorname{Re}(\kappa_{\mathcal{C}} \mathcal{Q}_n) & z & \Omega_{\lambda} \Omega(n, A). \end{cases}$$

当z Ω $\Omega(n,A)$ 时, $|\varphi(z)|$ $A|\varphi(z)|$, 便有

© 1994-2010 China Academic Journal Flactronic Bullinging House. All rights reserved. http://w

因为 $\iint \mathcal{Q}(z) | dx dy <$, $\lim_n F_n(z) = 0$, Lebesgue 控制收敛定理给出

$$\lim_{n} \iint_{\Omega} \{k | \mathcal{Q}_{n}(z)| - \operatorname{Re}(\mathcal{K}_{f}(z) \mathcal{Q}_{n}(z))\} dx dy = \lim_{n} \iint_{\Omega} F_{n}(z) dx dy = \iint_{\Omega} \lim_{n} F_{n}(z) dx dy,$$

即

$$\lim_{n} \iint_{\Omega} \left[k \middle| \mathcal{Q}(z) \middle| - \operatorname{Re}(\mathcal{K}(z) \mathcal{Q}(z)) \right] dx dy = 0.$$
 (8)

∀ €> 0, 由式(7), 存在 A₀> 0, 使得

$$\iint_{\Omega(\mathcal{R}_{\lambda})} [k|\mathcal{Q}] - \operatorname{Re} \mathcal{K}_{y} \mathcal{Q}] \, \mathrm{d}x \, \mathrm{d}y < \mathcal{C} 2. \tag{9}$$

由式(8),存在正整数 No,当 n> No 时,有

$$\iint_{\Omega : \mathcal{Q}(\pi^{A}, 0)} [k| \mathcal{Q}| - \operatorname{Re}(\kappa^{\mathcal{Q}})] dx dy < \mathcal{E} 2.$$
(10)

利用式(9), (10) 便有, 当 $n > N_0$ 时,

$$\delta\{\kappa, \mathcal{Q}\} < \epsilon/2 + \epsilon/2 = \epsilon$$

因此 ký 满足条件(3).

定理2证毕.

参 考 文 献

- 1 Reich E. A criterion for unique extremality of Teichmüller mappings [J]. India Univ. Math. J., 1981, (30): 441~447
- 2 Reich E. On criteria for unique extremality of Teichmüller meppings[J]. Ann. Acad. Sci. Fenn., Ser. A. I. Math., 1981, (6): 289 ~ 301
- 3 刘增荣. Reich 的一个定理的改进[J]. 华侨大学学报(自然科学版), 1989, 10(1): 1~5

Improving One of Reich's Theorems and Problem Correlated with It

Liu Jinxiong

(Dept. of Manag. Info. Sci., Huaqiao Univ., 362011, Quanzhou)

Abstract Assuming f to be Teichmüeller mapping of \mathcal{R} . Reich proved that f is the uniquely extremal mapping if there exist function sequence $\{\mathcal{Q}_n\} \subset \beta(\Omega)$ to make $\lim_n \mathcal{Q}_n(z) = \mathcal{Q}(z)$, a.e., $\lim_n \iint_{\Omega} k |\mathcal{Q}_n| - \operatorname{Re}(\kappa_{\mathcal{Q}_n}) dx dy = 0$,

where K_f is composite character of f. On this basis, the author proves that Reich's conclusion can be established even if f is not assumed to be Teichmüller mapping; and that the inverse proposition of Reich's conclusion can also be established under definite condition.

Keywords quasiconformal mapping, uniquely extremal mapping, Teichmüeller mapping

© 1994-2010 China Academic Journal Electronic Publishing House. All rights reserved. http://w