[1]卫海燕.深圳市境外游客市场的动态预测模型分析[J].华侨大学学报(自然科学版),1999,20(3):326-328.[doi:10.11830/ISSN.1000-5013.1999.03.0326]
 Wei Haiyan.A Dynamic Prediction Model for Analysing the Market of Overseas Tourists in Shenzhen City[J].Journal of Huaqiao University(Natural Science),1999,20(3):326-328.[doi:10.11830/ISSN.1000-5013.1999.03.0326]
点击复制

深圳市境外游客市场的动态预测模型分析()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第20卷
期数:
1999年第3期
页码:
326-328
栏目:
出版日期:
1999-07-20

文章信息/Info

Title:
A Dynamic Prediction Model for Analysing the Market of Overseas Tourists in Shenzhen City
作者:
卫海燕
陕西师范大学旅游与环境学院
Author(s):
Wei Haiyan
关键词:
境外游客 预测模型 灰色系统 GM(1.1)模型
Keywords:
overseas tourists prediction model gray system GM(1 1) model
分类号:
F590.1,O211.67
DOI:
10.11830/ISSN.1000-5013.1999.03.0326
摘要:
通过对深圳市境外游客数量的分析,发现除个别年份以外,整个时间序列总体呈增长趋势.根据客流量与时间的关系,利用灰色系统理论建立深圳市境外游客市场的GM(1,1)动态灰色预测模型.该模型经过检验,不仅与实际客流量相吻合,还可较精确地给出短期甚至中期的预报结果,以便对未来几年客流量进行预测
Abstract:
For analysing the market of overseas tourists in Shenzhen,a dynamic grey prediction model known as GM(1,1) model is formed by applying theory of grey system.Starting from analysing the amount of overseas tourist in the city,this research model is formed i

相似文献/References:

[1]汪帆.自然通风建筑室内热状况预测模型[J].华侨大学学报(自然科学版),1991,12(2):182.[doi:10.11830/ISSN.1000-5013.1991.02.0182]
 Wang Fan.An Indoor Thermal Characteristics Prediction Model for the Use of Naturally Ventilated Building[J].Journal of Huaqiao University(Natural Science),1991,12(3):182.[doi:10.11830/ISSN.1000-5013.1991.02.0182]
[2]李浩,施养杭.混凝土碳化深度预测模型的比对与分析[J].华侨大学学报(自然科学版),2007,28(2):192.[doi:10.3969/j.issn.1000-5013.2007.02.021]
 LI Hao,SHI Yang-hang.Discussion of Concrete Carbonation Depth Predictive Models[J].Journal of Huaqiao University(Natural Science),2007,28(3):192.[doi:10.3969/j.issn.1000-5013.2007.02.021]
[3]施养杭,李浩.混凝土结构碳化寿命可靠度分析[J].华侨大学学报(自然科学版),2008,29(4):600.[doi:10.11830/ISSN.1000-5013.2008.04.0600]
 SHI Yang-hang,LI Hao.Reliability Analysis on Life of Carbonized Concrete Structure[J].Journal of Huaqiao University(Natural Science),2008,29(3):600.[doi:10.11830/ISSN.1000-5013.2008.04.0600]
[4]叶青.厦门市工程估价的RBF神经网络预测模型[J].华侨大学学报(自然科学版),2012,33(4):446.[doi:10.11830/ISSN.1000-5013.2012.04.0446]
 YE Qing.Prediction Model of the Project Cost Estimation Based on RBF Neural Network[J].Journal of Huaqiao University(Natural Science),2012,33(3):446.[doi:10.11830/ISSN.1000-5013.2012.04.0446]
[5]刘婧,叶青.采用BP和RBF神经网络的厦门市工程造价预测模型[J].华侨大学学报(自然科学版),2013,34(5):576.[doi:10.11830/ISSN.1000-5013.2013.05.0576]
 LIU Jing,YE Qing.Project Cost Prediction Model Based on BP and RBP Neural Networks in Xiamen City[J].Journal of Huaqiao University(Natural Science),2013,34(3):576.[doi:10.11830/ISSN.1000-5013.2013.05.0576]
[6]莫小琴,李钟慎.混沌时间序列的LSSVM预测方法[J].华侨大学学报(自然科学版),2015,36(预先出版):0.
 MO Xiao-qin,LI Zhong-shen.Prediction Method of the Chaotic Time Series Using Least Squares Support Vector Machine[J].Journal of Huaqiao University(Natural Science),2015,36(3):0.
[7]莫小琴,李钟慎.混沌时间序列的LSSVM预测方法[J].华侨大学学报(自然科学版),2014,35(4):373.[doi:10.11830/ISSN.1000-5013.2014.04.0373]
 MO Xiao-qin,LI Zhong-shen.Prediction Method of the Chaotic Time Series Using Least Squares Support Vector Machine[J].Journal of Huaqiao University(Natural Science),2014,35(3):373.[doi:10.11830/ISSN.1000-5013.2014.04.0373]
[8]冉茂宇.非出水时段电热水器加热时间与能耗的预测模型[J].华侨大学学报(自然科学版),2016,37(2):247.[doi:10.11830/ISSN.1000-5013.2016.02.0247]
 RAN Maoyu.Prediction Model of the Heating Time and Energy Consumption of Electric Water Heater During the Un-Draining Period[J].Journal of Huaqiao University(Natural Science),2016,37(3):247.[doi:10.11830/ISSN.1000-5013.2016.02.0247]
[9]冉茂宇.不同出水方式下电热水器出水时间与出水量的预测模型[J].华侨大学学报(自然科学版),2016,37(4):451.[doi:10.11830/ISSN.1000-5013.201604012]
 RAN Maoyu.Prediction Model of Water Draining Time and Volume for Electric Water Heater in Different Water Draining Modes[J].Journal of Huaqiao University(Natural Science),2016,37(3):451.[doi:10.11830/ISSN.1000-5013.201604012]
[10]余路.电信客户流失的组合预测模型[J].华侨大学学报(自然科学版),2016,37(5):637.[doi:10.11830/ISSN.1000-5013.201605022]
 YU Lu.Combination Forecasting Model of Customer Churns in Telecom Industry[J].Journal of Huaqiao University(Natural Science),2016,37(3):637.[doi:10.11830/ISSN.1000-5013.201605022]

备注/Memo

备注/Memo:
国家自然科学基金
更新日期/Last Update: 2014-03-22