[1]曾文平.解多维抛物型方程的两个三层显格式[J].华侨大学学报(自然科学版),1996,17(2):118-122.[doi:10.11830/ISSN.1000-5013.1996.02.0118]
Zeng Wenping.Two Classes of Explicit Schemes for Solving Multi-Dimensional Parabolic Equations[J].Journal of Huaqiao University(Natural Science),1996,17(2):118-122.[doi:10.11830/ISSN.1000-5013.1996.02.0118]
点击复制
解多维抛物型方程的两个三层显格式()
《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]
- 卷:
-
第17卷
- 期数:
-
1996年第2期
- 页码:
-
118-122
- 栏目:
-
- 出版日期:
-
1996-04-20
文章信息/Info
- Title:
-
Two Classes of Explicit Schemes for Solving Multi-Dimensional Parabolic Equations
- 作者:
-
曾文平
-
华侨大学管理信息科学系
- Author(s):
-
Zeng Wenping
-
-
- 关键词:
-
多维抛物型偏微分方程; 三层显式差分格式; 分离变量法
- Keywords:
-
multi dimension parabolic partial differential equation; three-level difference scheme; separation of variables
- 分类号:
-
O241.82
- DOI:
-
10.11830/ISSN.1000-5013.1996.02.0118
- 摘要:
-
提出两类解N-维抛物型方程的两个三层显式差分格式.显式格式(Ⅰ)的稳定性条件是,且,其中P=1,2,…,N.而显式格式(Ⅱ)当参数α>1时是无条件稳定的.它们的局部截断误差阶分别是及。
- Abstract:
-
Two classes of explicit three-level difference schemes are derived for solving parabolic partial differential equation of N-dimension.Explicit scheme Ⅰ is stable under the condition of and where rp=△t/(△rp)2, (p=1,2,..,N); while explicit scheme Ⅱ is uncon
更新日期/Last Update:
2014-03-22