[1]曾文平.两类含参数高精度恒稳的半显式差分格式[J].华侨大学学报(自然科学版),1993,14(2):133-141.[doi:10.11830/ISSN.1000-5013.1993.02.0133]
 Zeng Wenping.Two Classes of Absolutely Stable and High Accuracy Difference Schemes Depending on a Parameter[J].Journal of Huaqiao University(Natural Science),1993,14(2):133-141.[doi:10.11830/ISSN.1000-5013.1993.02.0133]
点击复制

两类含参数高精度恒稳的半显式差分格式()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第14卷
期数:
1993年第2期
页码:
133-141
栏目:
出版日期:
1993-04-20

文章信息/Info

Title:
Two Classes of Absolutely Stable and High Accuracy Difference Schemes Depending on a Parameter
作者:
曾文平
华侨大学管理信息科学系
Author(s):
Zeng Wenping
关键词:
色散方程 高精度 绝对稳定 半显式差分格式
Keywords:
dispersion equation high accuracy absolutely stable semi-explicit difference scheme
DOI:
10.11830/ISSN.1000-5013.1993.02.0133
摘要:
本文建立了解色散方程u1=auxxx的两类含参数的三层的半显式差分格式.它们的局部截断误差的阶均为0或0.用判别稳定性的Von Neumann准则可以证明:当适当选取参数(a≤1)时,这些格式都是无条件稳定的,并且当必须的边界条件给定时它们可以显式地进行计算。在特殊情况下,离散误差的阶为0,但稳定性限制非常苛刻.
Abstract:
Two classes of three level semi-explicit difference schemes depending on a parame- ter are developed for solving dispersion equation u1=auxxx.They have a similar order of local truncation error as 0(τ2+h4+(τ/h)2+τh)or 0(τ2+h4+(τ/h)2).By Von Neumann Criter

相似文献/References:

[1]夏正权,沈子镛.高精度和大直径内螺纹挤压攻丝的机理与实践[J].华侨大学学报(自然科学版),1987,8(4):430.[doi:10.11830/ISSN.1000-5013.1987.04.0430]
 Xia Zhengquan,Shen Jiyong.A High Precision and Large Diameter Internal Threading by Extrusion[J].Journal of Huaqiao University(Natural Science),1987,8(2):430.[doi:10.11830/ISSN.1000-5013.1987.04.0430]
[2]张宗欣.高精度位置传感器及其在液压轧机上的应用[J].华侨大学学报(自然科学版),1988,9(4):539.[doi:10.11830/ISSN.1000-5013.1988.04.0539]
 Zhang Zongxin.A High Accuracy Position Sensor and Its Application to Hydraulic Mill[J].Journal of Huaqiao University(Natural Science),1988,9(2):539.[doi:10.11830/ISSN.1000-5013.1988.04.0539]
[3]王子丁.色散方程的六点半显式差分格式[J].华侨大学学报(自然科学版),1993,14(2):148.[doi:10.11830/ISSN.1000-5013.1993.02.0148]
 Wang Ziding.Semi-Explicit Difference Schemes of Six Point Unconditionally Stable Relating to Dispersive Equation[J].Journal of Huaqiao University(Natural Science),1993,14(2):148.[doi:10.11830/ISSN.1000-5013.1993.02.0148]
[4]曾文平.解三维抛物型方程的高精度显式格式[J].华侨大学学报(自然科学版),1995,16(2):128.[doi:10.11830/ISSN.1000-5013.1995.02.0128]
 Zeng Wenping.High Accuracy Explicit Difference Schemes for Solving Three-Dimensional Equation of the Parabola[J].Journal of Huaqiao University(Natural Science),1995,16(2):128.[doi:10.11830/ISSN.1000-5013.1995.02.0128]
[5]曾文平.解四阶抛物型方程高精度恒稳的隐式格式[J].华侨大学学报(自然科学版),1996,17(4):331.[doi:10.11830/ISSN.1000-5013.1996.04.0331]
 Zeng Wenping.A Class of High Accurate and Absolutely Stable Implicit Difference Schemes for Solving Four Order Parabolic Equations[J].Journal of Huaqiao University(Natural Science),1996,17(2):331.[doi:10.11830/ISSN.1000-5013.1996.04.0331]
[6]曾文平.解四阶抛物型方程的高精度显式差分格式[J].华侨大学学报(自然科学版),1997,18(2):122.[doi:10.11830/ISSN.1000-5013.1997.02.0122]
 Zeng Wenping.Explicit Difference Scheme of High Accuracy for Solving Four Order Parabolic Equation[J].Journal of Huaqiao University(Natural Science),1997,18(2):122.[doi:10.11830/ISSN.1000-5013.1997.02.0122]
[7]曾文平.解二维抛物型方程的恒稳高精度格式[J].华侨大学学报(自然科学版),1999,20(1):18.[doi:10.11830/ISSN.1000-5013.1999.01.0018]
 Zeng Wenping.A Family of Steady and High Accurate Difference Schemes for Solving Two Dimensional Equations of Parabolic Type[J].Journal of Huaqiao University(Natural Science),1999,20(2):18.[doi:10.11830/ISSN.1000-5013.1999.01.0018]
[8]黄浪扬,曾文平.抛物型方程的一族高精度恒稳格式[J].华侨大学学报(自然科学版),2000,21(2):124.[doi:10.3969/j.issn.1000-5013.2000.02.004]
 Huang langyang,Zeng Wenping.A Group of Steady Difference Schemes wth High Accuracy for Solving Parabolic Equation[J].Journal of Huaqiao University(Natural Science),2000,21(2):124.[doi:10.3969/j.issn.1000-5013.2000.02.004]
[9]曾文平.抛物型方程的一族双参数高精度恒稳格式[J].华侨大学学报(自然科学版),2002,23(4):327.[doi:10.3969/j.issn.1000-5013.2002.04.001]
[10]曾文平.对流方程一族新的三层双参数高精度格式[J].华侨大学学报(自然科学版),2003,24(1):22.[doi:10.3969/j.issn.1000-5013.2003.01.004]
 Zeng Wenping.A New Family of Three-Layer and Bi-Parametric Difference Schemes with High Accuracy for Solving Convection Equation[J].Journal of Huaqiao University(Natural Science),2003,24(2):22.[doi:10.3969/j.issn.1000-5013.2003.01.004]

备注/Memo

备注/Memo:
国家教委留学生基金资助课题
更新日期/Last Update: 2014-03-22