[1]王全义.一类周期微分系统的同期解[J].华侨大学学报(自然科学版),1993,14(1):12-19.[doi:10.11830/ISSN.1000-5013.1993.01.0012]
 Wang Quanyi.Periodic Solutions for a Class of Periodic Differential Systems[J].Journal of Huaqiao University(Natural Science),1993,14(1):12-19.[doi:10.11830/ISSN.1000-5013.1993.01.0012]
点击复制

一类周期微分系统的同期解()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第14卷
期数:
1993年第1期
页码:
12-19
栏目:
出版日期:
1993-01-20

文章信息/Info

Title:
Periodic Solutions for a Class of Periodic Differential Systems
作者:
王全义
华侨大学管理信息科学系
Author(s):
Wang Quanyi
关键词:
微分系统 周期解 存在性 不动点方法
Keywords:
differential system periodic solutions existence fixed point method
DOI:
10.11830/ISSN.1000-5013.1993.01.0012
摘要:
本文研究了一类周期微分系统的周期解的存在性问题,利用不动点方法,得到了此类系统存在周期解的充分性条件。所得结果推广了文[1]的主要结果。
Abstract:
The existence of periodic solutions for a class of periodic differential systems is studied in this paper. The sufficient conditions for the existence of such periodic solutions are obtained by means of fixed point method. The results extend the main resu

相似文献/References:

[1]王全义.纯量Volterra积分微分方程的周期解[J].华侨大学学报(自然科学版),1994,15(2):127.[doi:10.11830/ISSN.1000-5013.1994.02.0127]
 Wang Quanyi.Periodic Solution of a Scalar Volterra Integrodifferential Equation[J].Journal of Huaqiao University(Natural Science),1994,15(1):127.[doi:10.11830/ISSN.1000-5013.1994.02.0127]
[2]王全义.纯量微分积分方程的周期解[J].华侨大学学报(自然科学版),1995,16(4):353.[doi:10.11830/ISSN.1000-5013.1995.04.0353]
 Wang Quanyi.Periodic Solutions of Scalar Integrodifferential Equations[J].Journal of Huaqiao University(Natural Science),1995,16(1):353.[doi:10.11830/ISSN.1000-5013.1995.04.0353]
[3]王全义.具有无限时滞的微积分方程的周期解的存在性与唯一性[J].华侨大学学报(自然科学版),1996,17(4):336.[doi:10.11830/ISSN.1000-5013.1996.04.0336]
 Wang Quanyi.Existence and Uniqueness of Periodic Solution to the Integro-Differential Equation with infinite Time-Lag[J].Journal of Huaqiao University(Natural Science),1996,17(1):336.[doi:10.11830/ISSN.1000-5013.1996.04.0336]
[4]王全义.一个造血模型周期解的存在性及唯一性[J].华侨大学学报(自然科学版),1997,18(1):11.[doi:10.11830/ISSN.1000-5013.1997.01.0011]
 Wang Quanyi.Existence and Uniqueness of Periodic Solution to a Hematopoiesis Model[J].Journal of Huaqiao University(Natural Science),1997,18(1):11.[doi:10.11830/ISSN.1000-5013.1997.01.0011]
[5]王全义.一个造血模型周期解的稳定性[J].华侨大学学报(自然科学版),1997,18(3):219.[doi:10.11830/ISSN.1000-5013.1997.03.0219]
 Wang Quanyi.Stability of Periodic Solution to a Hematopoiesis Model[J].Journal of Huaqiao University(Natural Science),1997,18(1):219.[doi:10.11830/ISSN.1000-5013.1997.03.0219]
[6]王全义.线性微分积分方程的周期解[J].华侨大学学报(自然科学版),2001,22(2):117.[doi:10.3969/j.issn.1000-5013.2001.02.002]
 Wang Quanyi.Periodic Solution to Integrodifferential Equation[J].Journal of Huaqiao University(Natural Science),2001,22(1):117.[doi:10.3969/j.issn.1000-5013.2001.02.002]
[7]王全义.线性积分微分方程的周期解的存在唯一性[J].华侨大学学报(自然科学版),2002,23(2):111.[doi:10.3969/j.issn.1000-5013.2002.02.001]
 Wang Quanyi.Existence and Uniqueness of Periodic Solutions to Linear Integrodifferential Equations[J].Journal of Huaqiao University(Natural Science),2002,23(1):111.[doi:10.3969/j.issn.1000-5013.2002.02.001]
[8]谢惠琴,王全义.时延细胞神经网络的指数稳定性和周期解[J].华侨大学学报(自然科学版),2004,25(1):22.[doi:10.3969/j.issn.1000-5013.2004.01.006]
 Xie Huiqin,Wang Quanyi.Exponential Stability and Periodic Solution for Cellular Neural Networks with Time Delay[J].Journal of Huaqiao University(Natural Science),2004,25(1):22.[doi:10.3969/j.issn.1000-5013.2004.01.006]
[9]张莉,王全义.一类二阶中立型泛函微分方程周期解的存在性[J].华侨大学学报(自然科学版),2006,27(2):126.[doi:10.3969/j.issn.1000-5013.2006.02.004]
 Zhang Li,Wang Quanyi.On the Existence of Periodic Solutions for the Second Order Neutral Functional Differential Equation[J].Journal of Huaqiao University(Natural Science),2006,27(1):126.[doi:10.3969/j.issn.1000-5013.2006.02.004]
[10]汪东树,王全义.一类具时滞和比率的扩散系统正周期解[J].华侨大学学报(自然科学版),2006,27(4):358.[doi:10.3969/j.issn.1000-5013.2006.04.006]
 Wang Dongshu,Wang Quanyi.Existence of Periodic Solution for Predator-Prey Diffusive System of Two Species with Time Delay and Ratio[J].Journal of Huaqiao University(Natural Science),2006,27(1):358.[doi:10.3969/j.issn.1000-5013.2006.04.006]
[11]王全义.一类高维周期系统的周期解[J].华侨大学学报(自然科学版),1994,15(4):363.[doi:10.11830/ISSN.1000-5013.1994.04.0363]
 Wang Quanyi.Periodic Solutions to One Class of Higher Dimensional Periodic Systems[J].Journal of Huaqiao University(Natural Science),1994,15(1):363.[doi:10.11830/ISSN.1000-5013.1994.04.0363]
[12]王全义.非线性周期系统的不稳定周期解[J].华侨大学学报(自然科学版),1995,16(2):121.[doi:10.11830/ISSN.1000-5013.1995.02.0121]
 Wang Quanyi.Unstable Periodic Solutions of Nonlinear Periodic Systems[J].Journal of Huaqiao University(Natural Science),1995,16(1):121.[doi:10.11830/ISSN.1000-5013.1995.02.0121]
[13]方聪娜,王全义.一类具有时滞的微分系统的周期解[J].华侨大学学报(自然科学版),2003,24(2):119.[doi:10.3969/j.issn.1000-5013.2003.02.002]
 with Time,Delay Fang,Congna Wang,et al.Periodic Solution to a Class of Differential Systems[J].Journal of Huaqiao University(Natural Science),2003,24(1):119.[doi:10.3969/j.issn.1000-5013.2003.02.002]

备注/Memo

备注/Memo:
华侨大学科研基金
更新日期/Last Update: 2014-03-22