[1]郑厚生.关于Bezier曲线性质及曲线拟合问题[J].华侨大学学报(自然科学版),1992,13(4):519-525.[doi:10.11830/ISSN.1000-5013.1992.04.0519]
 Zheng Housheng.The property of Bezier Curve and the Problem of Curve Fitting[J].Journal of Huaqiao University(Natural Science),1992,13(4):519-525.[doi:10.11830/ISSN.1000-5013.1992.04.0519]
点击复制

关于Bezier曲线性质及曲线拟合问题()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第13卷
期数:
1992年第4期
页码:
519-525
栏目:
出版日期:
1992-10-20

文章信息/Info

Title:
The property of Bezier Curve and the Problem of Curve Fitting
作者:
郑厚生
华侨大学精密机械工程系
Author(s):
Zheng Housheng
关键词:
Bezier曲线 基函数 曲线拟合
Keywords:
Bezier curve basic function curve fitting
DOI:
10.11830/ISSN.1000-5013.1992.04.0519
摘要:
本文首先介绍了Bezier曲线的定义和特性,着重探讨Bezier曲线基函数的性质,这对利用Bezier曲线进行曲线轮廓设计,将有着宏观上和直观感觉上的参考意义。
Abstract:
The paper begins with the definition and characteristics of Bezier curve, and centres on the property of the basic function of Bezier curve. This will be of help macroscopically and perceivably for designing the profile of a curve by make use of Bezier cu

相似文献/References:

[1]郑文明,吴清江.三次Bezier曲线绘制的一种新的快速算法[J].华侨大学学报(自然科学版),2001,22(4):362.[doi:10.3969/j.issn.1000-5013.2001.04.007]
 Zheng Wenming,Wu Qingjiang.A New Fast Algorithm for Drawing Cubic Bezier Curve[J].Journal of Huaqiao University(Natural Science),2001,22(4):362.[doi:10.3969/j.issn.1000-5013.2001.04.007]
[2]吴胜,庄清渠.三阶微分方程的Legendre-Petrov-Galerkin谱元方法[J].华侨大学学报(自然科学版),2013,34(3):344.[doi:10.11830/ISSN.1000-5013.2013.03.0344]
 WU Sheng,ZHUANG Qing-qu.Legendre-Petrov-Galerkin Spectral Element Method for Third-Order Differential Equations[J].Journal of Huaqiao University(Natural Science),2013,34(4):344.[doi:10.11830/ISSN.1000-5013.2013.03.0344]
[3]李敏,庄清渠.半无界条状区域四阶方程的Laguerre-Legendre混合谱逼近[J].华侨大学学报(自然科学版),2013,34(4):471.[doi:10.11830/ISSN.1000-5013.2013.04.0471]
 LI Min,ZHUANG Qing-qu.Mixed Laguerre-Legendre Spectral Approximation of the Fourth-Order Equations in a Semi-Infinite Channel[J].Journal of Huaqiao University(Natural Science),2013,34(4):471.[doi:10.11830/ISSN.1000-5013.2013.04.0471]
[4]黄永.Bandelet变换及其逼近特性分析[J].华侨大学学报(自然科学版),2016,37(1):62.[doi:10.11830/ISSN.1000-5013.2016.01.0062]
 HUANG Yong.Bandelet Transform and Analysis of Its Approximation Characteristics[J].Journal of Huaqiao University(Natural Science),2016,37(4):62.[doi:10.11830/ISSN.1000-5013.2016.01.0062]
[5]王金平,庄清渠.五阶常微分方程的Petrov-Galerkin谱元法[J].华侨大学学报(自然科学版),2017,38(3):435.[doi:10.11830/ISSN.1000-5013.201703027]
 WANG Jinping,ZHUANG Qingqu.Petrov-Galerkin Spectral-Element Method for Solving Fifth-Order Ordinary Differential Equations[J].Journal of Huaqiao University(Natural Science),2017,38(4):435.[doi:10.11830/ISSN.1000-5013.201703027]

更新日期/Last Update: 2014-03-22