[1]陈恒新.矩阵逆阵的上界及相应扰动方程组的误差估计[J].华侨大学学报(自然科学版),1992,13(4):448-453.[doi:10.11830/ISSN.1000-5013.1992.04.0448]
 Chen Hengxin.The Upper Bound of Inverse Matrix and the Error Estimate of Relevant Perturbation Equations[J].Journal of Huaqiao University(Natural Science),1992,13(4):448-453.[doi:10.11830/ISSN.1000-5013.1992.04.0448]
点击复制

矩阵逆阵的上界及相应扰动方程组的误差估计()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第13卷
期数:
1992年第4期
页码:
448-453
栏目:
出版日期:
1992-10-20

文章信息/Info

Title:
The Upper Bound of Inverse Matrix and the Error Estimate of Relevant Perturbation Equations
作者:
陈恒新
华侨大学管理信息科学系
Author(s):
Chen Hengxin
关键词:
逆矩阵 扰动方程 误差估计
Keywords:
inverse matrices bound perturbation equation error estimate
DOI:
10.11830/ISSN.1000-5013.1992.04.0448
摘要:
本文证明了一类非对角占优矩阵是可逆的,并给出了其逆阵的上界,以及解相应扰动方程组的误差估计.从而使严格对角占优这一类矩阵的有关结论得到扩充,并成为本文定理的特例.
Abstract:
A class of nondiagonally dominant matrices are peoved to be invirtible; the upper bound of their inverse matrices and the error estimate for solving their perturbation equations are given. Thus the conclusion in relation to strictly diagonally dominant ma

相似文献/References:

[1]王志雄.超图的Turan数[J].华侨大学学报(自然科学版),1993,14(2):142.[doi:10.11830/ISSN.1000-5013.1993.02.0142]
 Wang Zhixiong.Turan’s Numbers of Hypergraphs[J].Journal of Huaqiao University(Natural Science),1993,14(4):142.[doi:10.11830/ISSN.1000-5013.1993.02.0142]
[2]田朝薇,宋海洲.正矩阵最大特征值界的新估计[J].华侨大学学报(自然科学版),2009,30(2):237.[doi:10.11830/ISSN.1000-5013.2009.02.0237]
 TIAN Zhao-wei,SONG Hai-zhou.New Estimation for the Bounds of the Greatest Characteristic Root of a Positive Matrix[J].Journal of Huaqiao University(Natural Science),2009,30(4):237.[doi:10.11830/ISSN.1000-5013.2009.02.0237]

更新日期/Last Update: 2014-03-22